Comparing Host Module Activation Patterns and Temporal Dynamics in Infection by Influenza H1N1 Viruses.

Irina Nudelman, Daniil Kudrin, German Nudelman, Raamesh Deshpande, Boris M Hartmann, Steven H Kleinstein, Chad L Myers, Stuart C Sealfon, Elena Zaslavsky
Author Information
  1. Irina Nudelman: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  2. Daniil Kudrin: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  3. German Nudelman: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  4. Raamesh Deshpande: Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States.
  5. Boris M Hartmann: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  6. Steven H Kleinstein: Department of Pathology, Yale University School of Medicine, New Haven, CT, United States.
  7. Chad L Myers: Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States.
  8. Stuart C Sealfon: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
  9. Elena Zaslavsky: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

Abstract

Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.

Keywords

References

  1. PLoS Comput Biol. 2010 Dec 09;6(12):e1001028 [PMID: 21170309]
  2. PLoS Comput Biol. 2010 May 27;6(5):e1000792 [PMID: 20523739]
  3. J Virol. 1998 Nov;72(11):8550-8 [PMID: 9765393]
  4. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W424-9 [PMID: 21576238]
  5. BMC Bioinformatics. 2013;14 Suppl 9:S5 [PMID: 23901792]
  6. Pac Symp Biocomput. 2009;:203-14 [PMID: 19209702]
  7. Bioinformatics. 2011 Apr 1;27(7):1036-8 [PMID: 21296752]
  8. PLoS Comput Biol. 2013;9(5):e1003054 [PMID: 23717195]
  9. Bioinformatics. 2002;18 Suppl 1:S233-40 [PMID: 12169552]
  10. Nat Rev Immunol. 2013 Jan;13(1):46-57 [PMID: 23237964]
  11. J Virol. 1992 Apr;66(4):2564-9 [PMID: 1548781]
  12. BMC Syst Biol. 2010 Dec 03;4:167 [PMID: 21129191]
  13. Genome Res. 2009 Jun;19(6):1093-106 [PMID: 19246570]
  14. J Virol. 2012 Jul;86(13):7192-206 [PMID: 22532695]
  15. Semin Immunol. 2013 Oct 31;25(3):228-39 [PMID: 23218769]
  16. Genome Biol. 2010;11(9):R96 [PMID: 20920250]
  17. Nat Rev Genet. 2013 Oct;14(10):719-32 [PMID: 24045689]
  18. Nature. 2004 Sep 16;431(7006):308-12 [PMID: 15372033]
  19. Annu Rev Immunol. 2002;20:621-67 [PMID: 11861614]
  20. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  21. Bioinformatics. 2001 Jun;17(6):495-508 [PMID: 11395426]
  22. Immunity. 2015 Sep 15;43(3):605-14 [PMID: 26362267]
  23. Brief Bioinform. 2010 Jan;11(1):15-29 [PMID: 20061351]
  24. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  25. Nucleic Acids Res. 2015 Feb 18;43(3):e20 [PMID: 25428368]
  26. Nat Rev Genet. 2012 Jul 18;13(8):552-64 [PMID: 22805708]
  27. Virology. 2006 Jan 5;344(1):119-30 [PMID: 16364743]
  28. BMC Bioinformatics. 2006 Jun 02;7:280 [PMID: 16749936]
  29. PLoS Pathog. 2011 Jan 27;7(1):e1001218 [PMID: 21298032]
  30. J Virol. 1993 Nov;67(11):6726-32 [PMID: 8411374]
  31. PLoS One. 2011;6(9):e24702 [PMID: 21980352]
  32. Nat Commun. 2017 Dec 5;8(1):1931 [PMID: 29203926]
  33. PLoS Pathog. 2012;8(3):e1002572 [PMID: 22412374]
  34. J Virol. 2015 Oct;89(20):10190-205 [PMID: 26223639]
  35. BMC Bioinformatics. 2010 Feb 19;11:95 [PMID: 20170493]
  36. Curr Top Microbiol Immunol. 2015;386:423-55 [PMID: 25033753]
  37. PLoS One. 2009 Dec 14;4(12):e8072 [PMID: 20011590]
  38. Nature. 2007 Jan 18;445(7125):319-23 [PMID: 17230189]
  39. BMC Bioinformatics. 2010 Mar 25;11:154 [PMID: 20338053]
  40. Mucosal Immunol. 2012 May;5(3):258-66 [PMID: 22294047]
  41. J Interferon Cytokine Res. 2009 Apr;29(4):199-207 [PMID: 19203244]
  42. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  43. Med Microbiol Immunol. 2009 Aug;198(3):175-83 [PMID: 19543913]
  44. J Virol. 2004 Oct;78(19):10420-32 [PMID: 15367608]
  45. Nature. 2006 Oct 5;443(7111):578-81 [PMID: 17006449]
  46. PLoS Comput Biol. 2008 Sep 26;4(9):e1000165 [PMID: 18818725]
  47. PLoS Pathog. 2009 Oct;5(10):e1000604 [PMID: 19798428]
  48. Genome Biol. 2005;6(13):R114 [PMID: 16420673]
  49. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10736-41 [PMID: 12149435]

Grants

  1. HHSN272201000054C/NIAID NIH HHS
  2. U19 AI117873/NIAID NIH HHS

MeSH Term

Algorithms
Antigen Presentation
Dendritic Cells
Host-Pathogen Interactions
Humans
Influenza A Virus, H1N1 Subtype
Influenza, Human
Pandemics
Transcriptome

Word Cloud

Created with Highcharts 10.0.0functionaldifferentvirusmodulesInfluenzavaryingpathogenicitystrainshostinfluenzatimetemporalresponseinfectionamongdifferencesactivatedpathwaysresponseshelpelucidatecomparevirusesmoduleseriesexpressiondatanetworkconservedtranscriptionalidentifieddynamicsH1N1differentialseriousglobalhealththreatshowsUnderstandingsimilaritiescantherapeutictargetsresponsiblepathogenesistypestimingcellsfourdevelopednewDYNAmicMOduleDYNAMOmethodaddressesneedutilizationintegrativeapproachoverlayswholegenomeontoimmune-specificextractsexhibitingeitherpatternsoverallactivitycommoncoretemporallyshiftedalsodifferentiallyregulatedrevealuniqueelementsworkhighlightsusefulnesscombininggeneinteractionmapcapturecellularconditionsresultsconservationimmunegloballygranularlevelprovidemechanisticinsightComparingHostModuleActivationPatternsTemporalDynamicsInfectionVirusesregulationdiscoveryprofile

Similar Articles

Cited By