In utero and lactational PCB exposure drives anatomic changes in the juvenile mouse bladder.

Kimberly P Keil Stietz, Conner L Kennedy, Sunjay Sethi, Anthony Valenzuela, Alexandra Nunez, Kathy Wang, Zunyi Wang, Peiqing Wang, Audrey Spiegelhoff, Birgit Puschner, Dale E Bjorling, Pamela J Lein
Author Information
  1. Kimberly P Keil Stietz: Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA.
  2. Conner L Kennedy: Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  3. Sunjay Sethi: Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA.
  4. Anthony Valenzuela: Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA.
  5. Alexandra Nunez: Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  6. Kathy Wang: Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  7. Zunyi Wang: Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  8. Peiqing Wang: Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  9. Audrey Spiegelhoff: Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  10. Birgit Puschner: Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA.
  11. Dale E Bjorling: Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, USA.
  12. Pamela J Lein: Department of Molecular Biosciences, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA.

Abstract

Bladder dysfunction, including incontinence, difficulty emptying the bladder, or urgency to urinate is a pervasive health and quality of life concern. However, risk factors for developing these symptoms are not completely understood, and the influence of exposure to environmental chemicals, especially during development, on the formation and function of the bladder is understudied. Environmental contaminants such as polychlorinated biphenyls (PCBs) are known to pose a risk to the developing brain; however, their influence on the development of peripheral target organs, such as bladder, are unknown. To address this data gap, C57Bl/6J mouse dams were exposed to an environmentally-relevant PCB mixture at 0, 0.1, 1 or 6 mg/kg daily beginning two weeks prior to mating and continuing through gestation and lactation. Bladders were collected from offspring at postnatal days (P) 28-31. PCB concentrations were detected in bladders in a dose-dependent manner. PCB effects on the bladder were sex- and dose-dependent. Overall, PCB effects were observed in male, but not female, bladders. PCBs increased bladder volume and suburothelial βIII-tubulin-positive nerve density compared to vehicle control. A subset of these nerves were sensory peptidergic axons indicated by increased calcitonin gene-related protein (CGRP) positive nerve fibers in mice exposed to the highest PCB dose compared to the lowest PCB dose. PCB-induced increased nerve density was also positively correlated with the number of mast cells in the bladder, suggesting inflammation may be involved. There were no detectable changes in epithelial composition or apoptosis as indicated by expression of cleaved caspase 3, suggesting PCBs do not cause overt toxicity. Bladder volume changes were not accompanied by changes in bladder mass or epithelial thickness, indicating that obstruction was not likely involved. Together, these results are the first to suggest that following developmental exposure, PCBs can distribute to the bladder and alter neuroanatomic development and bladder volume in male mice.

Keywords

References

  1. Toxicol Sci. 2005 Mar;84(1):149-56 [PMID: 15574674]
  2. J Physiol. 2014 Feb 1;592(3):537-49 [PMID: 24297847]
  3. Endocrinology. 2012 Nov;153(11):5556-65 [PMID: 22948219]
  4. Genes Brain Behav. 2019 Jan;18(1):e12526 [PMID: 30311737]
  5. Chemosphere. 2017 Aug;181:63-73 [PMID: 28426942]
  6. Environ Toxicol Chem. 2008 Feb;27(2):299-305 [PMID: 18348647]
  7. Environ Res. 2019 Apr;171:177-184 [PMID: 30665119]
  8. Am J Physiol Regul Integr Comp Physiol. 2015 Sep 15;309(6):R629-38 [PMID: 26224686]
  9. Comp Med. 2009 Apr;59(2):139-46 [PMID: 19389305]
  10. Dev Cell. 2013 Sep 16;26(5):469-482 [PMID: 23993789]
  11. Xenobiotica. 2013 Nov;43(11):933-47 [PMID: 23581876]
  12. JAMA Intern Med. 2016 Oct 1;176(10):1557-1559 [PMID: 27479808]
  13. Neurourol Urodyn. 2019 Sep;38(7):1866-1873 [PMID: 31270838]
  14. Toxicol Sci. 2018 Apr 1;162(2):548-558 [PMID: 29216392]
  15. Allergy Asthma Clin Immunol. 2005 Jun 15;1(2):65-80 [PMID: 20529227]
  16. Environ Int. 2010 Nov;36(8):893-900 [PMID: 20723988]
  17. Biol Sex Differ. 2016 Sep 02;7(1):42 [PMID: 27594982]
  18. Toxicol Sci. 2016 Apr;150(2):429-40 [PMID: 26865671]
  19. Am J Physiol Renal Physiol. 2018 Nov 1;315(5):F1208-F1216 [PMID: 30019933]
  20. Nat Clin Pract Urol. 2007 Jan;4(1):46-54 [PMID: 17211425]
  21. Toxicol Sci. 2017 Aug 1;158(2):401-411 [PMID: 28510766]
  22. Toxicol Lett. 1992 Dec;64-65 Spec No:661-7 [PMID: 1471220]
  23. Environ Res. 2002 Mar;88(3):210-8 [PMID: 12051799]
  24. Environ Mol Mutagen. 2012 Oct;53(8):589-98 [PMID: 22930557]
  25. Environ Health Perspect. 2008 Apr;116(4):474-80 [PMID: 18414629]
  26. Neurourol Urodyn. 2016 Nov;35(8):1000-1005 [PMID: 26370069]
  27. ISRN Toxicol. 2013 Sep 03;2013:483832 [PMID: 24083032]
  28. J Comp Neurol. 1995 Dec 4;363(1):28-36 [PMID: 8682935]
  29. Environ Pollut. 2018 Nov;242(Pt A):1022-1032 [PMID: 30373033]
  30. Environ Health Perspect. 2009 Mar;117(3):426-35 [PMID: 19337518]
  31. Chem Res Toxicol. 2015 Sep 21;28(9):1774-83 [PMID: 26271003]
  32. Environ Sci Technol. 2012 Oct 16;46(20):11393-401 [PMID: 22974126]
  33. J Urol. 2004 Oct;172(4 Pt 1):1524-8 [PMID: 15371884]
  34. Toxicol Sci. 2019 Mar 1;168(1):95-109 [PMID: 30395321]
  35. Food Chem Toxicol. 2019 Jul;129:64-76 [PMID: 31026535]
  36. Environ Sci Technol. 2015 Jan 20;49(2):1156-64 [PMID: 25510359]
  37. Eur Child Adolesc Psychiatry. 2015 Feb;24(2):127-40 [PMID: 24980793]
  38. J Physiol. 2005 Sep 1;567(Pt 2):621-39 [PMID: 15961431]
  39. Environ Health Perspect. 2003 Mar;111(3):357-576 [PMID: 12611666]
  40. Am J Physiol Renal Physiol. 2018 Dec 1;315(6):F1583-F1591 [PMID: 30089031]
  41. News Physiol Sci. 2000 Oct;15:213-218 [PMID: 11390913]
  42. Am J Physiol Renal Physiol. 2009 Oct;297(4):F1101-8 [PMID: 19587139]
  43. Histochem Cell Biol. 2019 Jul;152(1):35-45 [PMID: 30976911]
  44. J Pediatr. 1990 Jan;116(1):38-45 [PMID: 2104928]
  45. Acta Histochem. 2012 Feb;114(2):166-71 [PMID: 21565388]
  46. Am J Physiol Regul Integr Comp Physiol. 2014 Oct 1;307(7):R893-900 [PMID: 25100077]
  47. Clin Immunol Immunopathol. 1995 Mar;74(3):209-16 [PMID: 7859410]
  48. Sci Total Environ. 2017 Dec 31;609:396-409 [PMID: 28755589]
  49. Can Urol Assoc J. 2017 Jan-Feb;11(1-2Suppl1):S64-S72 [PMID: 28265323]
  50. Neurotoxicology. 2019 Dec;75:30-40 [PMID: 31454514]
  51. Neurourol Urodyn. 2015 Nov;34(8):763-8 [PMID: 25111368]
  52. Toxicol Sci. 2017 Jul 1;158(1):101-115 [PMID: 28431184]
  53. Environ Health Perspect. 2012 Jul;120(7):1003-9 [PMID: 22534176]
  54. Handb Exp Pharmacol. 2009;(194):91-138 [PMID: 19655106]
  55. Toxics. 2017 Dec 23;6(1): [PMID: 29295518]
  56. Toxicology. 2012 Sep 4;299(1):44-54 [PMID: 22595366]
  57. Curr Neurobiol. 2010 Mar;1(1):70-76 [PMID: 24052688]
  58. Clin Geriatr Med. 2015 Nov;31(4):535-48 [PMID: 26476114]
  59. Toxicol Lett. 2003 Oct 15;144(3):337-49 [PMID: 12927351]
  60. Toxicol Appl Pharmacol. 2003 May 15;189(1):1-10 [PMID: 12758055]
  61. Am J Clin Exp Urol. 2020 Feb 25;8(1):59-72 [PMID: 32211455]
  62. Mult Scler. 2009 Jul;15(7):860-8 [PMID: 19542265]
  63. Environ Toxicol Pharmacol. 2020 Jan;73:103279 [PMID: 31704585]
  64. Urology. 2007 Apr;69(4 Suppl):34-40 [PMID: 17462477]
  65. Nat Neurosci. 2002 Sep;5(9):856-60 [PMID: 12161756]
  66. Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F113-F120 [PMID: 30353742]
  67. Neurourol Urodyn. 2017 Nov;36(8):1972-1980 [PMID: 28185314]
  68. Toxicol Appl Pharmacol. 2018 Jun 5;353:55-66 [PMID: 29879404]
  69. Environ Sci Pollut Res Int. 2020 Mar;27(9):8885-8896 [PMID: 31713823]
  70. Environ Sci Technol. 2019 Apr 2;53(7):3948-3958 [PMID: 30821444]
  71. Environ Health Perspect. 1999 Oct;107(10):823-8 [PMID: 10504150]
  72. Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R534-47 [PMID: 20032263]
  73. Int J Mol Sci. 2020 Feb 04;21(3): [PMID: 32033061]
  74. PLoS One. 2017 Jan 13;12(1):e0170129 [PMID: 28085917]
  75. J Urol. 2011 Apr;185(4):1432-6 [PMID: 21349549]
  76. Environ Res. 2003 Oct;93(2):167-76 [PMID: 12963401]
  77. Can Urol Assoc J. 2014 Jul;8(7-8 Suppl 5):S148-50 [PMID: 25243039]
  78. Arch Environ Contam Toxicol. 2019 Jul;77(1):68-78 [PMID: 30949744]
  79. BMC Physiol. 2011 Nov 07;11:16 [PMID: 22059553]
  80. Development. 2015 May 15;142(10):1893-908 [PMID: 25968320]
  81. Environ Health Perspect. 2010 Dec;118(12):1654-67 [PMID: 20829149]
  82. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8394-8399 [PMID: 30061411]
  83. Lab Invest. 1997 Jul;77(1):37-49 [PMID: 9251677]
  84. J Am Soc Nephrol. 2007 Feb;18(2):461-71 [PMID: 17202422]
  85. Acta Neuropathol. 2019 Sep;138(3):363-387 [PMID: 30976975]
  86. Psychiatr Danub. 2019 Sep;31(Suppl 3):475-478 [PMID: 31488775]
  87. Environ Health Perspect. 2007 Jan;115(1):48-52 [PMID: 17366818]
  88. PLoS One. 2017 Sep 28;12(9):e0185241 [PMID: 28957439]
  89. Toxicol Sci. 2007 Jul;98(1):178-86 [PMID: 17434953]
  90. Nat Rev Neurosci. 2008 Jun;9(6):453-66 [PMID: 18490916]
  91. J Neural Transm (Vienna). 2008;115(3):443-60 [PMID: 18327532]
  92. J Pediatr Urol. 2015 Oct;11(5):264.e1-7 [PMID: 26052001]
  93. Handb Exp Pharmacol. 2011;(202):395-423 [PMID: 21290237]
  94. Environ Health Perspect. 2017 Mar;125(3):474-480 [PMID: 27548254]
  95. Environ Res. 2010 Jan;110(1):33-9 [PMID: 19811781]
  96. Environ Health Perspect. 2005 Oct;113(10):1277-84 [PMID: 16203234]
  97. Environ Sci Technol. 2010 Apr 15;44(8):2822-7 [PMID: 19957996]
  98. PLoS One. 2018 Aug 14;13(8):e0202182 [PMID: 30106981]
  99. J Physiol. 2016 Jul 1;594(13):3575-88 [PMID: 27006168]
  100. Am J Physiol Renal Physiol. 2009 Dec;297(6):F1477-501 [PMID: 19587142]
  101. Int J Mol Sci. 2020 May 30;21(11): [PMID: 32486162]
  102. PLoS One. 2013 May 31;8(5):e64696 [PMID: 23741373]
  103. Environ Sci Technol. 2017 Jul 18;51(14):7853-7860 [PMID: 28656752]
  104. Br J Urol. 1996 Jan;77(1):41-54 [PMID: 8653316]
  105. Dev Dyn. 2011 Oct;240(10):2364-77 [PMID: 21905163]
  106. Talanta. 2013 Sep 15;113:41-8 [PMID: 23708622]
  107. Environ Health Perspect. 2012 Jul;120(7):997-1002 [PMID: 22534141]
  108. Environ Res. 1999 Feb;80(2 Pt 2):S87-S96 [PMID: 10092422]
  109. Environ Health Perspect. 2018 Nov;126(11):117004 [PMID: 30465702]
  110. Am J Manag Care. 2013;19(10 Suppl):s191-6 [PMID: 24495240]
  111. J Chem Neuroanat. 2001 Mar;21(2):125-38 [PMID: 11312054]

Grants

  1. R01 ES029213/NIEHS NIH HHS
  2. P01 ES011269/NIEHS NIH HHS
  3. P30 ES005605/NIEHS NIH HHS
  4. U54 HD079125/NICHD NIH HHS
  5. T32 ES007059/NIEHS NIH HHS
  6. P30 ES023513/NIEHS NIH HHS
  7. P50 HD103526/NICHD NIH HHS
  8. UL1 TR000002/NCATS NIH HHS
  9. R00 ES029537/NIEHS NIH HHS
  10. P42 ES013661/NIEHS NIH HHS
  11. R01 ES014901/NIEHS NIH HHS
  12. T32 ES007015/NIEHS NIH HHS
  13. U54 DK104310/NIDDK NIH HHS

Word Cloud

Created with Highcharts 10.0.0bladderPCBPCBschangesexposuredevelopmentincreasedvolumenerveBladderhealthriskdevelopinginfluencepolychlorinatedbiphenylsperipheralmouseexposed01bladdersdose-dependenteffectsmaledensitycomparedindicatedmicedosesuggestinginvolvedepithelialdevelopmentaldysfunctionincludingincontinencedifficultyemptyingurgencyurinatepervasivequalitylifeconcernHoweverfactorssymptomscompletelyunderstoodenvironmentalchemicalsespeciallyformationfunctionunderstudiedEnvironmentalcontaminantsknownposebrainhowevertargetorgansunknownaddressdatagapC57Bl/6Jdamsenvironmentally-relevantmixture6mg/kgdailybeginningtwoweekspriormatingcontinuinggestationlactationBladderscollectedoffspringpostnataldaysP28-31concentrationsdetectedmannersex-OverallobservedfemalesuburothelialβIII-tubulin-positivevehiclecontrolsubsetnervessensorypeptidergicaxonscalcitoningene-relatedproteinCGRPpositivefibershighestlowestPCB-inducedalsopositivelycorrelatednumbermastcellsinflammationmaydetectablecompositionapoptosisexpressioncleavedcaspase3causeoverttoxicityaccompaniedmassthicknessindicatingobstructionlikelyTogetherresultsfirstsuggestfollowingcandistributealterneuroanatomicuterolactationaldrivesanatomicjuvenileoriginsdiseaselowerurinarytractnervoussystempersistentorganicpollutants

Similar Articles

Cited By