Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation.

Ken Komatsu, Nobumitsu Sasaki, Tetsuya Yoshida, Katsuhiro Suzuki, Yuki Masujima, Masayoshi Hashimoto, Satoru Watanabe, Naoya Tochio, Takanori Kigawa, Yasuyuki Yamaji, Kenro Oshima, Shigetou Namba, Richard S Nelson, Tsutomu Arie
Author Information
  1. Ken Komatsu: Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technologygrid.136594.c (TUAT), Fuchu, Japan. ORCID
  2. Nobumitsu Sasaki: Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technologygrid.136594.c (TUAT), Fuchu, Japan.
  3. Tetsuya Yoshida: Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyogrid.26999.3d, Tokyo, Japan.
  4. Katsuhiro Suzuki: Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technologygrid.136594.c (TUAT), Fuchu, Japan.
  5. Yuki Masujima: Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technologygrid.136594.c (TUAT), Fuchu, Japan.
  6. Masayoshi Hashimoto: Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyogrid.26999.3d, Tokyo, Japan.
  7. Satoru Watanabe: Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
  8. Naoya Tochio: Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
  9. Takanori Kigawa: Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
  10. Yasuyuki Yamaji: Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyogrid.26999.3d, Tokyo, Japan.
  11. Kenro Oshima: Faculty of Bioscience, Department of Clinical Plant Science, Hosei Universitygrid.257114.4, Koganei, Japan.
  12. Shigetou Namba: Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyogrid.26999.3d, Tokyo, Japan.
  13. Richard S Nelson: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA.
  14. Tsutomu Arie: Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technologygrid.136594.c (TUAT), Fuchu, Japan. ORCID

Abstract

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus , the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order . Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.

Keywords

References

  1. J Virol. 2019 Jan 17;93(3): [PMID: 30429349]
  2. Curr Opin Virol. 2014 Dec;9:119-26 [PMID: 25462443]
  3. Anal Biochem. 1984 Apr;138(1):141-3 [PMID: 6731838]
  4. Plant Cell. 2012 Feb;24(2):778-93 [PMID: 22307853]
  5. J Virol. 2003 Jan;77(1):523-34 [PMID: 12477857]
  6. Nucleic Acids Res. 2011 Mar;39(4):1538-53 [PMID: 20926394]
  7. Arch Virol. 2017 Feb;162(2):581-584 [PMID: 27743255]
  8. J Gen Virol. 2009 Apr;90(Pt 4):1014-1024 [PMID: 19264652]
  9. J Gen Virol. 1992 Aug;73 ( Pt 8):2129-34 [PMID: 1645151]
  10. Curr Opin Virol. 2021 Jun;48:30-41 [PMID: 33845410]
  11. Plant Physiol. 2012 Mar;158(3):1359-70 [PMID: 22253256]
  12. Virology. 2011 May 10;413(2):205-15 [PMID: 21377183]
  13. J Virol. 2014 May;88(10):5638-51 [PMID: 24600009]
  14. Plant J. 2007 Sep;51(6):1126-36 [PMID: 17666025]
  15. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  16. Virology. 2014 Dec;471-473:72-80 [PMID: 25461533]
  17. J Virol. 2009 Oct;83(20):10460-71 [PMID: 19656892]
  18. J Virol. 2019 Feb 19;93(5): [PMID: 30541845]
  19. J Biomol NMR. 2007 Mar;37(3):225-9 [PMID: 17237976]
  20. Virology. 2010 Feb 20;397(2):358-68 [PMID: 20004458]
  21. J Biomol NMR. 1994 Sep;4(5):603-14 [PMID: 22911360]
  22. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1863-7 [PMID: 14769932]
  23. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  24. J Biomol NMR. 1999 Mar;13(3):289-302 [PMID: 10212987]
  25. J Virol. 2007 Jan;81(2):872-83 [PMID: 17093195]
  26. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W649-52 [PMID: 17452345]
  27. Biol Direct. 2015 Apr 11;10:16 [PMID: 25886938]
  28. Annu Rev Virol. 2014 Nov;1(1):237-59 [PMID: 26958722]
  29. Mol Plant Microbe Interact. 2019 Nov;32(11):1475-1486 [PMID: 31298967]
  30. J Cell Biol. 2011 May 2;193(3):521-35 [PMID: 21518793]
  31. J Gen Virol. 2015 Apr;96(Pt 4):921-932 [PMID: 25502653]
  32. PLoS Pathog. 2009 Mar;5(3):e1000351 [PMID: 19325881]
  33. Proc Natl Acad Sci U S A. 2021 Jan 5;118(1): [PMID: 33376201]
  34. PLoS Pathog. 2018 May 10;14(5):e1007028 [PMID: 29746582]
  35. Annu Rev Microbiol. 2010;64:241-56 [PMID: 20825348]
  36. Virus Res. 2001 Nov 28;80(1-2):41-52 [PMID: 11597747]
  37. Virology. 1961 Mar;13:294-9 [PMID: 13755915]
  38. Arch Virol. 2006 Oct;151(10):2067-75 [PMID: 16633739]
  39. Trends Biochem Sci. 2000 Mar;25(3):147-50 [PMID: 10694887]
  40. Front Plant Sci. 2020 Jul 03;11:862 [PMID: 32719692]
  41. Nat Rev Microbiol. 2008 May;6(5):363-74 [PMID: 18414501]
  42. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  43. Sci Transl Med. 2010 Jan 20;2(15):15ra6 [PMID: 20371471]
  44. PLoS Pathog. 2014 Nov 13;10(10):e1004501 [PMID: 25392992]
  45. FEBS Lett. 1999 Jan 8;442(1):15-9 [PMID: 9923595]
  46. Methods Mol Biol. 2004;278:353-78 [PMID: 15318003]
  47. J Struct Funct Genomics. 2004;5(1-2):63-8 [PMID: 15263844]
  48. BMC Biotechnol. 2012 May 06;12:21 [PMID: 22559055]
  49. J Virol. 2009 Jun;83(12):6257-68 [PMID: 19357161]
  50. Arch Virol. 2014 May;159(5):885-96 [PMID: 24154949]
  51. J Virol. 2007 Mar;81(6):2745-57 [PMID: 17192310]
  52. Gastroenterology. 2015 Mar;148(3):616-25 [PMID: 25479136]
  53. Virology. 2012 Nov 10;433(1):131-41 [PMID: 22898643]
  54. J Virol. 2009 Jun;83(11):5535-43 [PMID: 19321624]
  55. J Gen Virol. 2007 Jun;88(Pt 6):1643-1655 [PMID: 17485523]
  56. Biochemistry. 2006 Feb 21;45(7):2221-33 [PMID: 16475810]
  57. PLoS Pathog. 2009 Dec;5(12):e1000705 [PMID: 20041173]
  58. J Virol. 2020 Jun 1;94(12): [PMID: 32269127]
  59. J Biomol NMR. 2007 Sep;39(1):31-52 [PMID: 17636449]
  60. Front Plant Sci. 2018 Jan 30;9:57 [PMID: 29441085]
  61. Mol Plant Microbe Interact. 2011 Apr;24(4):408-20 [PMID: 21190438]
  62. Virology. 2009 Oct 25;393(2):272-85 [PMID: 19729179]
  63. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):3088-93 [PMID: 18287023]
  64. J Cell Biol. 2013 Jun 24;201(7):981-95 [PMID: 23798728]
  65. Front Plant Sci. 2017 Dec 19;8:2138 [PMID: 29312393]
  66. Virology. 2005 Jul 20;338(1):81-95 [PMID: 15936051]
  67. J Virol. 2007 Feb;81(4):1899-911 [PMID: 17151124]
  68. J Virol. 2017 Mar 13;91(7): [PMID: 28100609]
  69. Arch Virol. 2008;153(1):193-8 [PMID: 17987351]
  70. Biochemistry. 2015 Feb 17;54(6):1401-7 [PMID: 25629766]
  71. J Virol. 2016 Jul 27;90(16):7205-7218 [PMID: 27252526]
  72. Methods Mol Biol. 2008;451:361-75 [PMID: 18370268]
  73. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14545-50 [PMID: 18799730]
  74. BMC Bioinformatics. 2006 May 16;7:255 [PMID: 16704727]
  75. J Biol Chem. 2001 Nov 23;276(47):44052-63 [PMID: 11557752]
  76. Annu Rev Phytopathol. 2016 Aug 4;54:55-78 [PMID: 27296148]
  77. J Virol. 1996 Jul;70(7):4795-9 [PMID: 8676510]
  78. J Virol. 2002 Oct;76(19):9856-67 [PMID: 12208963]

Grants

  1. /the Program for Promotion of Basic Research Activities for Innovative Bioscience
  2. 25221201/MEXT | Japan Society for the Promotion of Science (JSPS)
  3. 17H03770/MEXT | Japan Society for the Promotion of Science (JSPS)
  4. 19K06048/MEXT | Japan Society for the Promotion of Science (JSPS)

MeSH Term

Amino Acid Sequence
Membrane Proteins
Methyltransferases
Plant Diseases
Potexvirus
Proline
RNA, Viral
RNA-Dependent RNA Polymerase
Replicon
Nicotiana
Viral Proteins
Viral Replicase Complex Proteins
Virus Replication

Chemicals

Membrane Proteins
RNA, Viral
Viral Proteins
Viral Replicase Complex Proteins
Proline
Methyltransferases
RNA-Dependent RNA Polymerase

Word Cloud

Created with Highcharts 10.0.0replicationvirusreplicaseamphipathicα-helixformationcomplexRNAPlAMVprolineperinuclearvirusesassociationintracellularmembranedomainresiduelargemembranesmethyltransferaseMETresiduesconservedhelicalstructurePlantagoasiaticamosaicpotexvirusidentifiedregiondeterminantdownstreamcorehydrophobicaminoacidreplicasespotexvirusesNMRSubstitutionabolishedfusionGFP-METpunctateformedproline-kinkedCharacterizedpositive-strandreplicateRegardinggenusmechanismRNA-dependentpolymeraseassociatesunderstudiedflotationanalysespredictedsequencesNuclearmagneticresonanceanalysisconfirmedα-helicalconfigurationunveiledkinkcausedhighlychargedEctopicexpressiongreenfluorescentproteinGFPentireresultedcolocatedinfectionExceptsubstitutionsubstitutionsalsopreventedrespectiveSmallstructuresobservedfusionshigh-molecular-weightcomplexesreplication-competent-incompetentviralrepliconsthussufficientcompetencediscussrolespotexvirus-specificcharacteristicallyassociateAlthoughassumedpossessmembrane-targetingpropertiesdomainsgenerallyremainunidentifiedpoorlycharacterizedsequenceincludesamongrelatedordernecessaryallowedwithincellsresemblingresultsdemonstraterolealonewillnecessarilyindicatesuccessfulIdentificationProline-KinkedAmphipathicα-HelixDownstreamMethyltransferaseDomainPotexvirusReplicaseRoleVirusReplicationPerinuclearComplexFormationTymoviralesendoplasmicreticulum

Similar Articles

Cited By