A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling.

Chao Zhou, Xiaoyun Liu, Xinglei Li, Hanlin Zhou, Sijia Wang, Zhu Yuan, Yonghong Zhang, Sanhe Li, Aiqing You, Lei Zhou, Zhengquan He
Author Information
  1. Chao Zhou: Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China. zhouchao@ctgu.edu.cn. ORCID
  2. Xiaoyun Liu: Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
  3. Xinglei Li: Bioacme Biotechnology Co., Ltd., Wuhan, 430056, China.
  4. Hanlin Zhou: Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
  5. Sijia Wang: Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
  6. Zhu Yuan: Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
  7. Yonghong Zhang: Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
  8. Sanhe Li: Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
  9. Aiqing You: Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
  10. Lei Zhou: Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China. yutianzhou@gmail.com.
  11. Zhengquan He: Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China. zhq_he@163.com.

Abstract

Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.

Keywords

References

  1. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  2. Plant Sci. 2019 Dec;289:110276 [PMID: 31623787]
  3. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  4. Plant Cell Rep. 1998 Sep;17(12):957-962 [PMID: 30736547]
  5. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  6. J Exp Bot. 2019 Aug 7;70(15):3867-3879 [PMID: 31037302]
  7. Plant Cell. 2018 Jan;30(1):15-36 [PMID: 29229750]
  8. BMC Biol. 2009 May 01;7:18 [PMID: 19409075]
  9. Plant J. 2018 Apr;94(2):215-231 [PMID: 29513366]
  10. Plant Physiol. 2016 Mar;170(3):1504-23 [PMID: 26729798]
  11. Cell Rep. 2018 Jul 10;24(2):304-311 [PMID: 29996092]
  12. Genetics. 2007 Aug;176(4):2055-67 [PMID: 17565939]
  13. Mol Plant. 2018 Dec 3;11(12):1492-1508 [PMID: 30448535]
  14. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E7022-9 [PMID: 26621743]
  15. New Phytol. 2010 Apr;186(1):46-53 [PMID: 20409176]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5163-71 [PMID: 27535938]
  18. Plant Physiol Biochem. 2019 Oct;143:154-164 [PMID: 31505448]
  19. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  20. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  21. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  22. Am J Bot. 2009 Jan;96(1):336-48 [PMID: 21628192]
  23. Sci Rep. 2017 Jan 10;7:40139 [PMID: 28071676]
  24. Rice (N Y). 2019 May 10;12(1):34 [PMID: 31076936]
  25. Cell. 2007 Nov 2;131(3):452-62 [PMID: 17981114]
  26. Plant Mol Biol. 2000 Jan;42(1):225-49 [PMID: 10688139]
  27. Curr Opin Genet Dev. 2018 Apr;49:1-7 [PMID: 29438956]
  28. Plant Reprod. 2014 Dec;27(4):181-96 [PMID: 25262386]
  29. Springerplus. 2013 Sep 05;2:439 [PMID: 24046812]
  30. Genetics. 2006 Jan;172(1):507-17 [PMID: 16172500]
  31. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  32. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  33. Nature. 2019 Nov;575(7781):109-118 [PMID: 31695205]
  34. Nat Plants. 2018 Feb;4(2):90-97 [PMID: 29379149]
  35. Plant Physiol. 2006 Jan;140(1):336-48 [PMID: 16377753]
  36. Genome Res. 2001 Dec;11(12):2133-41 [PMID: 11731505]
  37. Gigascience. 2020 Jun 1;9(6): [PMID: 32562491]
  38. Plant Cell. 2016 Oct;28(10):2365-2384 [PMID: 27655842]
  39. Annu Rev Plant Biol. 2007;58:377-406 [PMID: 17280525]
  40. Nat Plants. 2019 Dec;5(12):1237-1249 [PMID: 31740773]
  41. Genomics Proteomics Bioinformatics. 2019 Apr;17(2):140-153 [PMID: 31201999]
  42. BMC Plant Biol. 2020 Feb 19;20(1):82 [PMID: 32075588]
  43. BMC Plant Biol. 2013 Nov 04;13:173 [PMID: 24188386]
  44. Nat Plants. 2019 Dec;5(12):1250-1259 [PMID: 31740772]
  45. Curr Protoc Mol Biol. 2015 Jan 05;109:21.29.1-21.29.9 [PMID: 25559105]
  46. Rice (N Y). 2014 Sep 02;7(1):15 [PMID: 25184027]
  47. Nucleic Acids Res. 2017 Apr 7;45(6):e41 [PMID: 27903897]
  48. Nucleic Acids Res. 2019 Sep 5;47(15):7857-7869 [PMID: 31184697]
  49. Plant Sci. 2020 Sep;298:110579 [PMID: 32771140]
  50. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  51. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  52. Theor Appl Genet. 2010 Jan;120(2):341-53 [PMID: 19657617]
  53. Nat Rev Genet. 2019 Apr;20(4):207-220 [PMID: 30675018]
  54. Bioinformatics. 2012 Aug 1;28(15):2084-5 [PMID: 22635606]
  55. Proc Natl Acad Sci U S A. 2021 Mar 30;118(13): [PMID: 33771925]
  56. New Phytol. 2010 Apr;186(1):184-93 [PMID: 20002320]
  57. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  58. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  59. Cell. 2021 Mar 4;184(5):1156-1170.e14 [PMID: 33539781]
  60. Rice (N Y). 2017 Dec 02;10(1):49 [PMID: 29197985]
  61. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  62. J Integr Plant Biol. 2021 Jan;63(1):180-209 [PMID: 33325112]
  63. Plant Commun. 2020 Dec 31;2(1):100140 [PMID: 33511349]
  64. BMC Genomics. 2017 Feb 6;18(1):129 [PMID: 28166742]
  65. J Exp Bot. 2011 May;62(8):2507-19 [PMID: 21273338]
  66. J Agric Food Chem. 2021 Feb 24;69(7):2337-2347 [PMID: 33555853]
  67. Plant Cell. 2011 May;23(5):1729-40 [PMID: 21602291]
  68. Nat Methods. 2017 Oct;14(10):959-962 [PMID: 28846090]
  69. Genome Biol. 2020 Jul 19;21(1):176 [PMID: 32684157]
  70. New Phytol. 2009 Dec;184(4):1003-15 [PMID: 19780987]
  71. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  72. New Phytol. 2020 Jul;227(1):65-83 [PMID: 32129897]
  73. Nature. 2016 Jul 28;535(7613):575-9 [PMID: 27437574]
  74. Plant Physiol. 2016 Jul;171(3):2041-54 [PMID: 27208249]
  75. Rice (N Y). 2020 Jun 3;13(1):32 [PMID: 32494867]
  76. J Evol Biol. 2013 Feb;26(2):229-46 [PMID: 23323997]
  77. Cytogenet Genome Res. 2013;140(2-4):270-85 [PMID: 23751292]
  78. Plants (Basel). 2020 Nov 03;9(11): [PMID: 33153046]

Grants

  1. 31900427/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0chromatingenomericeACRsgenetictranscriptionalcropsepigeneticeffectHoweverduplicationautopolyploidizationsignaturesautotetraploiddiploidsequencingfoundregionsprofilinggenedoublingmarksexpressionRiceEvolutionarilypolyploidyrepresentssmartmethodadjustingagronomicallyimportantimpactsgenomicabundancecondensationAutopolyploidsrelativelyconcisebackgroundgreatdiversityprovideidealsystemunderstandmechanismsattributedgenome-dosagewhethereventsimpactlessunderstoodaddressgeneratedlineprogenitorOryzasativasspindica93-11Usingtransposase-accessibleautopolyploidsleadhighernumberaccessibleeuchromatinencodeprotein-codinggenesexpectedACRdensitiessupportedactivitiesreliespositionsregardlessnoticedfavorsgenicmaindriverschangesadditionprobedintricatecrosstalkamongvariouskindspatternsACR-associatedplantsintegratingmultiple-omicsanalysesincludingimmunoprecipitationRNA-seqdatasuggestedcombinationH3K36me2H3K36me3mayassociateddynamicperturbationintroducedconsequencenumerousmetabolitesstimulatedCollectivelyfindingssuggestautotetraploidsreshapemorphologyproductsmodulatingresultingpragmaticmeanscropimprovementGenomeDoublingEventReshapesMorphologyProductsModulatingChromatinSignaturesGeneExpressionProfilingAccessibleAutopolyploidEpigeneticTranscriptionalregulation

Similar Articles

Cited By