NUAK2 and RCan2 participate in the p53 mutant pro-tumorigenic network.
Eleonora Mammarella, Carlotta Zampieri, Emanuele Panatta, Gerry Melino, Ivano Amelio
Author Information
Eleonora Mammarella: Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
Carlotta Zampieri: Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. ORCID
Emanuele Panatta: Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. ORCID
Gerry Melino: Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. ORCID
Ivano Amelio: Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. ivano.amelio@uniroma2.it. ORCID
中文译文
English
Most inactivating mutations in TP53 gene generates neomorphic forms of p53 proteins that experimental evidence and clinical observations suggest to exert gain-of-function effects. While massive effort has been deployed in the dissection of wild type p53 transcriptional programme, p53 mutant pro-tumorigenic gene network is still largely elusive. To help dissecting the molecular basis of p53 mutant GOF, we performed an analysis of a fully annotated genomic and transcriptomic human pancreatic adenocarcinoma to select candidate players of p53 mutant network on the basis their differential expression between p53 mutant and p53 wild-type cohorts and their prognostic value. We identified NUAK2 and RCan2 whose p53 mutant GOF-dependent regulation was further validated in pancreatic cancer cellular model. Our data demonstrated that p53 can physically bind RCan2 gene locus in regulatory regions corresponding to the chromatin permissive areas where known binding partners of p53 mutant, such as p63 and Srebp, bind. Overall, starting from clinically relevant data and progressing into experimental validation, our work suggests NUAK2 and RCan2 as novel candidate players of the p53 mutant pro-tumorigenic network whose prognostic and therapeutic interest might attract future studies.
Cell Death Differ. 2020 Feb;27(2):405-419
[PMID: 31907390 ]
Cell. 2018 Apr 5;173(2):305-320.e10
[PMID: 29625049 ]
Lancet Oncol. 2021 Aug;22(8):e369-e376
[PMID: 34216541 ]
Nat Rev Cancer. 2009 Nov;9(11):831-41
[PMID: 19776746 ]
Horm Cancer. 2019 Feb;10(1):24-35
[PMID: 30565014 ]
Biol Direct. 2020 Nov 19;15(1):25
[PMID: 33213502 ]
Biochem Biophys Res Commun. 2003 Jun 6;305(3):592-7
[PMID: 12763035 ]
Cell Death Differ. 2019 Sep;26(9):1566-1581
[PMID: 30413783 ]
Biochem Biophys Res Commun. 2007 Jun 22;358(1):277-84
[PMID: 17482573 ]
Mol Cell. 2019 Oct 17;76(2):346-358
[PMID: 31561953 ]
Biol Direct. 2019 May 9;14(1):10
[PMID: 31072345 ]
Oncogene. 2021 Feb;40(5):899-908
[PMID: 33288884 ]
J Biol Chem. 2006 May 26;281(21):14677-82
[PMID: 16569637 ]
Cancer Cell. 2018 Mar 12;33(3):512-526.e8
[PMID: 29533787 ]
J Mol Biol. 2021 Jul 23;433(15):167094
[PMID: 34119490 ]
Biochemistry. 2009 Jan 20;48(2):242-53
[PMID: 19140693 ]
Cell Death Differ. 2020 Jan;27(1):297-309
[PMID: 31164717 ]
Trends Cancer. 2021 Mar;7(3):226-239
[PMID: 33199193 ]
Cell Death Differ. 2021 Feb;28(2):799-813
[PMID: 33110215 ]
Cell Death Differ. 2020 Mar;27(3):831-832
[PMID: 32034315 ]
FEBS J. 2012 Jan;279(1):154-67
[PMID: 22035263 ]
Biol Direct. 2020 Jun 15;15(1):10
[PMID: 32539851 ]
Elife. 2020 Dec 02;9:
[PMID: 33263276 ]
Macromol Biosci. 2016 Jun;16(6):847-58
[PMID: 26857526 ]
Biol Direct. 2020 Oct 14;15(1):18
[PMID: 33054808 ]
Nature. 2015 Jul 16;523(7560):352-6
[PMID: 26009011 ]
Mol Cell. 2020 Nov 5;80(3):452-469.e9
[PMID: 33157015 ]
Cancer Cell. 2018 Aug 13;34(2):298-314.e7
[PMID: 30107178 ]
Biol Direct. 2020 Dec 10;15(1):29
[PMID: 33302990 ]
Nat Rev Gastroenterol Hepatol. 2021 Jul;18(7):469-481
[PMID: 34089011 ]
Biol Direct. 2019 Aug 23;14(1):16
[PMID: 31443736 ]
Biol Direct. 2019 Jan 23;14(1):3
[PMID: 30674330 ]
Nature. 2016 Mar 3;531(7592):47-52
[PMID: 26909576 ]
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10869-E10878
[PMID: 30381462 ]
J Mol Biol. 2018 Jun 22;430(13):1829-1838
[PMID: 29733853 ]
Nature. 2020 Feb;578(7793):82-93
[PMID: 32025007 ]
J Cell Biol. 2020 Nov 2;219(11):
[PMID: 32886745 ]
Arch Biochem Biophys. 2000 Jan 15;373(2):435-41
[PMID: 10620369 ]
Nature. 2020 Oct;586(7827):133-138
[PMID: 32728212 ]
Biochem Biophys Res Commun. 2010 Oct 29;401(4):568-73
[PMID: 20888799 ]
Oncogenesis. 2016 Aug 15;5(8):e253
[PMID: 27526107 ]
Cell Death Discov. 2020 Oct 10;6:100
[PMID: 33083021 ]
Nucleic Acids Res. 2003 Feb 1;31(3):911-21
[PMID: 12560487 ]
Horm Cancer. 2019 Feb;10(1):45-50
[PMID: 30196424 ]
Cell. 2014 Apr 10;157(2):382-394
[PMID: 24725405 ]
Cell Death Differ. 2019 Mar;26(3):409-425
[PMID: 29786075 ]
Cell Death Differ. 2021 Feb;28(2):818-820
[PMID: 33149274 ]
Horm Cancer. 2020 Feb;11(1):17-33
[PMID: 31858384 ]
J Biosci. 2007 Aug;32(5):827-39
[PMID: 17914225 ]
Nat Commun. 2018 Aug 29;9(1):3510
[PMID: 30158528 ]
Int J Mol Sci. 2019 Dec 11;20(24):
[PMID: 31835684 ]
Front Cell Dev Biol. 2021 Feb 11;8:607670
[PMID: 33644030 ]
Cell. 2009 Dec 24;139(7):1327-41
[PMID: 20064378 ]
Cell Death Differ. 2020 May;27(5):1740-1742
[PMID: 32203169 ]
Cell Death Differ. 2019 Jan;26(2):382-393
[PMID: 30283082 ]
Cell Death Differ. 2020 Aug;27(8):2517-2530
[PMID: 32127658 ]
Biol Direct. 2020 Feb 13;15(1):3
[PMID: 32054490 ]
Nat Med. 1996 Oct;2(10):1143-6
[PMID: 8837616 ]
Int J Mol Med. 2001 Jul;8(1):67-71
[PMID: 11408952 ]
Cell. 2004 Dec 17;119(6):847-60
[PMID: 15607980 ]
EMBO J. 1993 Dec 15;12(13):5057-64
[PMID: 8262048 ]
J Exp Med. 2020 Dec 7;217(12):
[PMID: 32845958 ]
Biol Direct. 2019 Nov 21;14(1):22
[PMID: 31752974 ]
Front Oncol. 2021 Feb 03;10:607149
[PMID: 33614491 ]
Horm Cancer. 2019 Feb;10(1):11-23
[PMID: 30350263 ]
Trends Biochem Sci. 2015 Aug;40(8):425-34
[PMID: 26032560 ]
Oncol Ther. 2021 Jul 8;:
[PMID: 34236692 ]
Cell Death Differ. 2020 Feb;27(2):829-830
[PMID: 31900426 ]
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9625-30
[PMID: 15983384 ]
Biochem Biophys Res Commun. 2004 Sep 3;321(4):845-50
[PMID: 15358104 ]
Cell Death Differ. 2020 Jan;27(1):269-283
[PMID: 31160716 ]
Horm Cancer. 2020 Oct;11(5-6):250-255
[PMID: 32761341 ]
Cell. 2004 Dec 17;119(6):861-72
[PMID: 15607981 ]
Curr Opin Cell Biol. 2018 Apr;51:65-72
[PMID: 29195118 ]
Cell Death Differ. 2019 Jan;26(2):199-212
[PMID: 30538286 ]
Genes Dev. 2021 Jul 1;35(13-14):940-962
[PMID: 34117095 ]
Horm Cancer. 2019 Feb;10(1):36-44
[PMID: 30293206 ]
Oncogene. 2008 Apr 17;27(18):2583-93
[PMID: 17982488 ]
Cell. 2009 Apr 3;137(1):87-98
[PMID: 19345189 ]
Biol Direct. 2019 Apr 29;14(1):8
[PMID: 31036036 ]
Cell Death Discov. 2020 Nov 26;6(1):131
[PMID: 33298891 ]
Cell Cycle. 2012 Oct 1;11(19):3638-48
[PMID: 22935697 ]
Biochem J. 1997 Feb 15;322 ( Pt 1):229-34
[PMID: 9078266 ]
Nat Commun. 2018 Nov 16;9(1):4834
[PMID: 30446657 ]
Cell Cycle. 2010 Sep 15;9(18):3730-9
[PMID: 20855944 ]
Oncogene. 2013 Nov 7;32(45):5253-60
[PMID: 23416985 ]
Animals
Carcinogenesis
Cell Line, Tumor
Gene Regulatory Networks
Genes, p53
Humans
Mice
Muscle Proteins
Pancreatic Neoplasms
Protein Serine-Threonine Kinases
Tumor Suppressor Protein p53
Pancreatic Neoplasms
Muscle Proteins
RCAN2 protein, human
TP53 protein, human
Tumor Suppressor Protein p53
NUAK2 protein, human
Protein Serine-Threonine Kinases