Machine learning designs non-hemolytic antimicrobial peptides.

Alice Capecchi, Xingguang Cai, Hippolyte Personne, Thilo Köhler, Christian van Delden, Jean-Louis Reymond
Author Information
  1. Alice Capecchi: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland jean-louis.reymond@dcb.unibe.ch. ORCID
  2. Xingguang Cai: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland jean-louis.reymond@dcb.unibe.ch. ORCID
  3. Hippolyte Personne: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland jean-louis.reymond@dcb.unibe.ch. ORCID
  4. Thilo Köhler: Department of Microbiology and Molecular Medicine, University of Geneva Switzerland.
  5. Christian van Delden: Department of Microbiology and Molecular Medicine, University of Geneva Switzerland.
  6. Jean-Louis Reymond: Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland jean-louis.reymond@dcb.unibe.ch. ORCID

Abstract

Machine learning (ML) consists of the recognition of patterns from training data and offers the opportunity to exploit large structure-activity databases for drug design. In the area of peptide drugs, ML is mostly being tested to design antimicrobial peptides (AMPs), a class of biomolecules potentially useful to fight multidrug-resistant bacteria. ML models have successfully identified membrane disruptive amphiphilic AMPs, however mostly without addressing the associated toxicity to human red blood cells. Here we trained recurrent neural networks (RNN) with data from DBAASP (Database of Antimicrobial Activity and Structure of Peptides) to design short non-hemolytic AMPs. Synthesis and testing of 28 generated peptides, each at least 5 mutations away from training data, allowed us to identify eight new non-hemolytic AMPs against , , and methicillin-resistant (MRSA). These results show that machine learning (ML) can be used to design new non-hemolytic AMPs.

References

  1. Biomed Res Int. 2016;2016:2475067 [PMID: 27274985]
  2. Front Microbiol. 2020 Jan 22;10:3097 [PMID: 32038544]
  3. J Comput Chem. 2018 Oct 5;39(26):2210-2216 [PMID: 30368831]
  4. Sci Rep. 2018 Jul 25;8(1):11189 [PMID: 30046138]
  5. Sci Rep. 2017 Feb 13;7:42362 [PMID: 28205576]
  6. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  7. Interface Focus. 2017 Dec 6;7(6):20160153 [PMID: 29147555]
  8. ACS Omega. 2020 Aug 28;5(36):22847-22851 [PMID: 32954133]
  9. BMC Bioinformatics. 2019 Dec 23;20(1):730 [PMID: 31870282]
  10. Eur Biophys J. 2005 Jun;34(4):273-84 [PMID: 15803330]
  11. Sci Data. 2019 Aug 13;6(1):148 [PMID: 31409791]
  12. Trends Biotechnol. 2011 Sep;29(9):464-72 [PMID: 21680034]
  13. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  14. Mol Inform. 2017 Jan;36(1-2): [PMID: 28124834]
  15. FEMS Microbiol Lett. 2014 Aug;357(1):63-8 [PMID: 24888447]
  16. Drug Discov Today. 2018 Aug;23(8):1538-1546 [PMID: 29750902]
  17. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13588-13593 [PMID: 27849600]
  18. PLoS Comput Biol. 2013;9(9):e1003212 [PMID: 24039565]
  19. J Biol Chem. 2018 Mar 9;293(10):3492-3509 [PMID: 29259134]
  20. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  21. Pharmaceuticals (Basel). 2019 Jun 03;12(2): [PMID: 31163671]
  22. Sci Rep. 2020 Aug 6;10(1):13206 [PMID: 32764602]
  23. Nature. 1982 Sep 23;299(5881):371-4 [PMID: 7110359]
  24. Nat Rev Drug Discov. 2018 Feb;17(2):97-113 [PMID: 29242609]
  25. Antimicrob Agents Chemother. 2020 Mar 24;64(4): [PMID: 32015046]
  26. ACS Chem Biol. 2009 Jan 16;4(1):65-74 [PMID: 19055425]
  27. Nat Biomed Eng. 2021 Aug;5(8):942 [PMID: 34183803]
  28. ACS Chem Biol. 2019 Apr 19;14(4):758-766 [PMID: 30830745]
  29. Biophys J. 1995 Oct;69(4):1230-45 [PMID: 8534794]
  30. J Mol Model. 2021 Feb 4;27(3):71 [PMID: 33543405]
  31. Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894 [PMID: 32464552]
  32. Chem Commun (Camb). 2018 May 15;54(40):5130-5133 [PMID: 29717727]
  33. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]
  34. Bioinformatics. 2018 Aug 15;34(16):2740-2747 [PMID: 29590297]
  35. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  36. Pharmacol Rev. 2013 Dec 31;66(1):334-95 [PMID: 24381236]
  37. Biomed Res Int. 2015;2015:475062 [PMID: 26000295]
  38. J Chem Inf Model. 2018 Feb 26;58(2):472-479 [PMID: 29355319]
  39. Drug Discov Today. 2018 Jun;23(6):1241-1250 [PMID: 29366762]
  40. J Mol Biol. 2019 Aug 23;431(18):3547-3567 [PMID: 30611750]
  41. Int J Antimicrob Agents. 2012 Apr;39(4):346-51 [PMID: 22325123]
  42. Int J Mol Sci. 2020 Sep 24;21(19): [PMID: 32987946]
  43. Database (Oxford). 2020 Jan 1;2020: [PMID: 32844169]

Word Cloud

Created with Highcharts 10.0.0AMPsMLdesignnon-hemolyticlearningdatapeptidesMachinetrainingmostlyantimicrobialnewconsistsrecognitionpatternsoffersopportunityexploitlargestructure-activitydatabasesdrugareapeptidedrugstestedclassbiomoleculespotentiallyusefulfightmultidrug-resistantbacteriamodelssuccessfullyidentifiedmembranedisruptiveamphiphilichoweverwithoutaddressingassociatedtoxicityhumanredbloodcellstrainedrecurrentneuralnetworksRNNDBAASPDatabaseAntimicrobialActivityStructurePeptidesshortSynthesistesting28generatedleast5mutationsawayallowedusidentifyeightmethicillin-resistantMRSAresultsshowmachinecanuseddesigns

Similar Articles

Cited By (52)