Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pf-5.

Qing Yan, Mary Liu, Teresa Kidarsa, Colin P Johnson, Joyce E Loper
Author Information
  1. Qing Yan: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA. ORCID
  2. Mary Liu: Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.
  3. Teresa Kidarsa: Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA.
  4. Colin P Johnson: Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
  5. Joyce E Loper: Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.

Abstract

Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. pyoluteorin is an autoregulated antibiotic produced by some spp. including the soil bacterium Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.

Keywords

References

  1. Microbiol Mol Biol Rev. 2013 Sep;77(3):440-75 [PMID: 24006471]
  2. PLoS Genet. 2012 Jul;8(7):e1002784 [PMID: 22792073]
  3. Mol Microbiol. 2004 Nov;54(4):921-34 [PMID: 15522077]
  4. FEMS Microbiol Lett. 2004 Mar 19;232(2):197-202 [PMID: 15033239]
  5. Res Microbiol. 2006 Sep;157(7):666-74 [PMID: 16545946]
  6. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):E2500-9 [PMID: 23776227]
  7. Elife. 2017 Mar 06;6: [PMID: 28262092]
  8. Wei Sheng Wu Xue Bao. 2007 Jun;47(3):441-6 [PMID: 17672302]
  9. Genome Biol. 2009;10(5):R51 [PMID: 19432983]
  10. J Bacteriol. 2002 Jun;184(11):3008-16 [PMID: 12003942]
  11. Mol Microbiol. 2002 Apr;44(2):403-16 [PMID: 11972779]
  12. Mol Plant Microbe Interact. 2000 Nov;13(11):1243-50 [PMID: 11059491]
  13. J Biol Chem. 1995 Nov 10;270(45):27299-304 [PMID: 7592991]
  14. J Lab Clin Med. 1954 Aug;44(2):301-7 [PMID: 13184240]
  15. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8617-22 [PMID: 19423672]
  16. Appl Environ Microbiol. 2006 Nov;72(11):7270-7 [PMID: 16980420]
  17. Microbiology (Reading). 1997 Dec;143 ( Pt 12):3871-3876 [PMID: 9421911]
  18. Curr Opin Microbiol. 2002 Jun;5(3):254-8 [PMID: 12057678]
  19. Microbiology (Reading). 2008 Dec;154(Pt 12):3609-3623 [PMID: 19047729]
  20. Gene. 2006 Jul 5;376(1):68-78 [PMID: 16581203]
  21. Appl Environ Microbiol. 2004 Mar;70(3):1758-66 [PMID: 15006802]
  22. mBio. 2012 Oct 16;3(5):e00191-12 [PMID: 23073761]
  23. Wei Sheng Wu Xue Bao. 2005 Jun;45(3):344-8 [PMID: 15989223]
  24. Mol Plant Microbe Interact. 2000 Feb;13(2):232-7 [PMID: 10659714]
  25. Mol Microbiol. 2011 Jul;81(2):395-414 [PMID: 21564338]
  26. Front Microbiol. 2020 Jul 08;11:1423 [PMID: 32733400]
  27. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  28. J Biol Chem. 2004 Jan 30;279(5):3885-92 [PMID: 14612444]
  29. J Appl Microbiol. 2005;99(1):24-38 [PMID: 15960662]
  30. Science. 2006 Feb 24;311(5764):1113-6 [PMID: 16497924]
  31. Mol Plant Microbe Interact. 2014 Jul;27(7):733-46 [PMID: 24742073]
  32. PLoS One. 2012;7(6):e39538 [PMID: 22761817]
  33. J Bacteriol. 1999 Apr;181(7):2166-74 [PMID: 10094695]
  34. Appl Environ Microbiol. 2005 Nov;71(11):6900-9 [PMID: 16269724]
  35. Front Microbiol. 2019 Dec 19;10:2927 [PMID: 31921086]
  36. Front Microbiol. 2016 Apr 19;7:497 [PMID: 27148187]
  37. Appl Environ Microbiol. 2017 Oct 17;83(21): [PMID: 28821548]
  38. Gene. 1998 May 28;212(1):77-86 [PMID: 9661666]
  39. Nat Rev Microbiol. 2006 Apr;4(4):259-71 [PMID: 16541134]
  40. J Bacteriol. 2000 Mar;182(5):1215-25 [PMID: 10671440]

Grants

  1. 2011-67019-30192/National Institute of Food and Agriculture

Word Cloud

Created with Highcharts 10.0.0pyoluteorinautoinductionbiosynthesispathway-specifictranscriptionalantibioticgenesPf-5PltRPltZAntibioticregulatordirectlytranscriptionPyoluteorintransportermicroorganismscommonlyregulatedallowsproducersquicklyamplifyproductionantibioticsresponseenvironmentalcuesgenerallyinvolvesoneperceivessignalstimulatesautoregulatedproducedsppincludingsoilbacteriumstudyshowknownactivatornecessarysufficientfoundperceivedinducersecondrepressesexpressionencodinggeneclusterMutationabolishedautoinducingeffectOverallresultssupportalternativemechanismtworegulatorscoordinatePossiblemechanismsmediatediscussedTwoPathway-SpecificTranscriptionalRegulatorsCoordinateAutoinductionPseudomonasprotegensregulation

Similar Articles

Cited By (5)