Type I Collagen Suspension Induces Neocollagenesis and Myodifferentiation in Fibroblasts .

Francesca Lombardi, Paola Palumbo, Francesca Rosaria Augello, Ilaria Giusti, Vincenza Dolo, Luca Guerrini, Maria Grazia Cifone, Maurizio Giuliani, Benedetta Cinque
Author Information
  1. Francesca Lombardi: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  2. Paola Palumbo: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  3. Francesca Rosaria Augello: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  4. Ilaria Giusti: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  5. Vincenza Dolo: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  6. Luca Guerrini: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  7. Maria Grazia Cifone: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  8. Maurizio Giuliani: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID
  9. Benedetta Cinque: Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy. ORCID

Abstract

The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of -smooth muscle actin (-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment .

References

  1. Adv Wound Care (New Rochelle). 2016 Jan 1;5(1):19-31 [PMID: 26858912]
  2. Matrix Biol. 2003 Mar;22(1):15-24 [PMID: 12714038]
  3. J Invest Dermatol. 2008 Oct;128(10):2526-40 [PMID: 18449211]
  4. Histochem J. 1996 Apr;28(4):229-45 [PMID: 8762055]
  5. Life Sci. 2010 Nov 20;87(19-22):579-86 [PMID: 20888348]
  6. PLoS One. 2015 Apr 07;10(4):e0123046 [PMID: 25849590]
  7. Histol Histopathol. 2014 Nov;29(11):1355-64 [PMID: 24781958]
  8. Connect Tissue Res. 2010 Oct;51(5):378-87 [PMID: 20604712]
  9. Bioengineering (Basel). 2019 Jun 30;6(3): [PMID: 31261996]
  10. Biogerontology. 2014 Aug;15(4):329-37 [PMID: 24770843]
  11. J Drugs Dermatol. 2019 Jan 01;18(1):9-16 [PMID: 30681787]
  12. J Biol Chem. 2019 Feb 8;294(6):2133-2141 [PMID: 30541925]
  13. Burns Trauma. 2013 Sep 18;1(2):63-72 [PMID: 27574627]
  14. Arch Dermatol Res. 2002 Jul;294(4):178-84 [PMID: 12111348]
  15. Curr Res Transl Med. 2016 Oct - Dec;64(4):171-177 [PMID: 27939455]
  16. Exp Mol Pathol. 2011 Aug;91(1):394-9 [PMID: 21530503]
  17. Lancet. 2005 Nov 12;366(9498):1736-43 [PMID: 16291068]
  18. Wound Repair Regen. 2017 Nov;25(6):912-922 [PMID: 29315980]
  19. J Biomed Mater Res A. 2015 Feb;103(2):581-92 [PMID: 24771686]
  20. J Cardiovasc Pharmacol. 2011 Apr;57(4):376-9 [PMID: 21297493]
  21. Polymers (Basel). 2016 Feb 04;8(2): [PMID: 30979136]
  22. Physiol Rev. 2019 Oct 1;99(4):1655-1699 [PMID: 31313981]
  23. Annu Rev Biochem. 2009;78:929-58 [PMID: 19344236]
  24. J Anat. 2019 Aug;235(2):418-429 [PMID: 31318053]
  25. Front Cell Dev Biol. 2019 Apr 24;7:60 [PMID: 31106200]
  26. Int J Mol Sci. 2019 Apr 29;20(9): [PMID: 31036793]
  27. J Oral Maxillofac Pathol. 2017 Sep-Dec;21(3):462-463 [PMID: 29391737]
  28. J Cell Commun Signal. 2018 Mar;12(1):35-43 [PMID: 29455303]
  29. Semin Cell Dev Biol. 2017 Feb;62:142-151 [PMID: 27838364]
  30. Int J Mol Sci. 2019 Jul 30;20(15): [PMID: 31366040]
  31. J Biol Chem. 2015 Sep 18;290(38):23291-306 [PMID: 26224630]
  32. J Histochem Cytochem. 1985 Aug;33(8):737-43 [PMID: 2410480]
  33. Am J Pathol. 2007 Jun;170(6):1807-16 [PMID: 17525249]
  34. Dis Model Mech. 2011 Mar;4(2):165-78 [PMID: 21324931]
  35. J Cell Physiol. 2016 Oct;231(10):2185-95 [PMID: 26841260]
  36. Adv Wound Care (New Rochelle). 2017 Feb 1;6(2):43-53 [PMID: 28224047]
  37. Cell Biol Int. 2018 Jan;42(1):95-104 [PMID: 28906033]
  38. Mol Immunol. 2019 Dec;116:191-198 [PMID: 31710976]
  39. J Cell Sci. 2016 Mar 15;129(6):1284 [PMID: 27442113]
  40. Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978 [PMID: 21421911]
  41. Saudi Pharm J. 2014 Sep;22(4):283-9 [PMID: 25161371]
  42. J Biomed Mater Res A. 2010 Sep 15;94(4):1050-60 [PMID: 20694972]
  43. Exp Dermatol. 2020 Jan;29(1):15-21 [PMID: 31494971]
  44. Nutrients. 2018 Jun 26;10(7): [PMID: 29949889]
  45. Annu Rev Food Sci Technol. 2015;6:527-57 [PMID: 25884286]
  46. J Biol Chem. 1998 Mar 13;273(11):5989-92 [PMID: 9497309]
  47. Tissue Eng Part A. 2013 Jul;19(13-14):1491-4 [PMID: 23240852]
  48. PLoS One. 2016 Feb 22;11(2):e0149799 [PMID: 26900837]
  49. Biopolymers. 2014 Aug;101(8):821-33 [PMID: 24633807]
  50. Gerontology. 2015;61(5):427-34 [PMID: 25660807]
  51. J Invest Dermatol. 2015 Sep;135(9):2181-2188 [PMID: 25905589]
  52. Arch Dermatol. 2008 May;144(5):666-72 [PMID: 18490597]
  53. Cell Adh Migr. 2015;9(4):308-16 [PMID: 25734486]
  54. Crit Rev Biochem Mol Biol. 2010 Apr;45(2):106-24 [PMID: 20199358]
  55. Aging Cell. 2016 Feb;15(1):67-76 [PMID: 26780887]
  56. Burns. 2018 Nov;44(7):1775-1786 [PMID: 30078473]
  57. J Biomed Opt. 2013 Mar;18(3):31108 [PMID: 23212157]
  58. Lasers Med Sci. 2016 Nov;31(8):1607-1611 [PMID: 27412287]
  59. Wound Repair Regen. 2007 Nov-Dec;15(6):809-16 [PMID: 18028128]
  60. Stem Cell Res Ther. 2017 Apr 18;8(1):81 [PMID: 28420408]
  61. Biomolecules. 2019 Nov 21;9(12): [PMID: 31766379]
  62. Cell Transplant. 2018 May;27(5):729-738 [PMID: 29692196]
  63. J Invest Dermatol. 2010 Dec;130(12):2818-27 [PMID: 20686497]
  64. Colloids Surf B Biointerfaces. 2019 Mar 1;175:636-643 [PMID: 30583219]
  65. Plast Reconstr Surg Glob Open. 2015 Aug 10;3(7):e471 [PMID: 26301160]
  66. Biomed Eng Online. 2019 Mar 18;18(1):24 [PMID: 30885217]
  67. Am J Pathol. 2010 Mar;176(3):1215-28 [PMID: 20093489]
  68. PLoS One. 2019 Jul 3;14(7):e0219165 [PMID: 31269075]
  69. Am J Pathol. 2006 Jun;168(6):1861-8 [PMID: 16723701]
  70. Int J Mol Sci. 2018 Oct 07;19(10): [PMID: 30301271]

MeSH Term

Actins
Animals
Antigens, Differentiation
Cell Differentiation
Collagen Type I
Fibroblasts
HSP47 Heat-Shock Proteins
Horses
Mice
Models, Biological
NIH 3T3 Cells
Prolyl Hydroxylases

Chemicals

Actins
Antigens, Differentiation
Collagen Type I
HSP47 Heat-Shock Proteins
Serpinh1 protein, mouse
Prolyl Hydroxylases