Identification of Candidate Gene-Based Markers for Girth Growth in Rubber Trees.

Gunlayarat Bhusudsawang, Ratchanee Rattanawong, Thitaporn Phumichai, Wirulda Pootakham, Sithichoke Tangphatsornruang, Kittipat Ukoskit
Author Information
  1. Gunlayarat Bhusudsawang: Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand.
  2. Ratchanee Rattanawong: Nong Khai Rubber Research Center, Rubber Research Institute of Thailand, Rubber Authority of Thailand, Rattanawapi District, Nong Khai 43120, Thailand.
  3. Thitaporn Phumichai: Rubber Research Institute of Thailand, Rubber Authority of Thailand, Bangkok 10900, Thailand.
  4. Wirulda Pootakham: National Science and Technology Development Agency, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand.
  5. Sithichoke Tangphatsornruang: National Science and Technology Development Agency, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand. ORCID
  6. Kittipat Ukoskit: Department of Biotechnology, Faculty of Science and Technology, Rangsit Campus, Thammasat University, Pathum Thani 12120, Thailand.

Abstract

Girth growth is an important factor in both latex and timber production of the rubber tree. In this study, we performed candidate gene association mapping for girth growth in rubber trees using intron length polymorphism markers (ILP) in identifying the candidate genes responsible for girth growth. The COBL064_1 marker developed from the candidate gene () regulating cellulose deposition and oriented cell expansion in the plant cell wall showed the strongest association with girth growth across two seasons in the Amazonian population and was validated in the breeding lines. We then applied single molecule real-time (SMRT) circular consensus sequencing (CCS) to analyze a wider gene region of the to pinpoint the single nucleotide polymorphism (SNP) that best explains the association with the traits. A SNP in the 3' UTR showing linkage disequilibrium with the COBL064_1 most associated with girth growth. This study showed that the cost-effective method of ILP gene-based markers can assist in identification of SNPs in the candidate gene associated with girth growth. The SNP markers identified in this study added useful markers for the improvement of girth growth in rubber tree breeding programs.

Keywords

References

  1. Bioinformatics. 2005 May 1;21(9):2128-9 [PMID: 15705655]
  2. Am J Hum Genet. 1980 May;32(3):314-31 [PMID: 6247908]
  3. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  4. Front Plant Sci. 2020 Feb 25;10:1794 [PMID: 32158452]
  5. Theor Appl Genet. 2013 Apr;126(4):999-1009 [PMID: 23272324]
  6. Front Plant Sci. 2017 Jun 15;8:1040 [PMID: 28674545]
  7. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  8. Front Plant Sci. 2018 Sep 10;9:1313 [PMID: 30271416]
  9. Nucleic Acids Res. 2010 Aug;38(15):e159 [PMID: 20571086]
  10. Plant Physiol. 2007 Jan;143(1):172-87 [PMID: 17098858]
  11. Genetics. 2008 Apr;178(4):2217-26 [PMID: 18245834]
  12. Genetics. 2009 Sep;183(1):325-35 [PMID: 19581446]
  13. Nat Genet. 2006 Feb;38(2):203-8 [PMID: 16380716]
  14. BMC Plant Biol. 2017 Aug 1;17(1):132 [PMID: 28764648]
  15. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  16. Plant Sci. 2015 Jun;235:37-45 [PMID: 25900564]
  17. Methods Mol Biol. 2009;578:23-39 [PMID: 19768585]
  18. J Integr Plant Biol. 2015 Nov;57(11):902-12 [PMID: 26297385]
  19. Plant Physiol. 2004 Aug;135(4):2368-78 [PMID: 15299141]
  20. BMC Genomics. 2013 Feb 02;14:75 [PMID: 23375136]
  21. Plant Physiol. 2010 Jul;153(3):895-905 [PMID: 20472751]
  22. Genomics. 2017 Oct;109(5-6):475-484 [PMID: 28751185]
  23. Sci Rep. 2016 Apr 01;6:23765 [PMID: 27032371]
  24. Sci Am. 2009 Jun;300(6):46-53 [PMID: 19485088]
  25. Nat Biotechnol. 2019 Oct;37(10):1155-1162 [PMID: 31406327]
  26. Nat Biotechnol. 2014 Apr;32(4):387-91 [PMID: 24633241]
  27. Front Plant Sci. 2019 Sep 26;10:1189 [PMID: 31616457]
  28. Mol Biotechnol. 2012 Jun;51(2):148-59 [PMID: 21892755]
  29. Am J Hum Genet. 2000 Jul;67(1):170-81 [PMID: 10827107]
  30. Nucleic Acids Res. 2011 Jul;39(13):5328-37 [PMID: 21427088]
  31. PLoS Genet. 2006 Dec;2(12):e190 [PMID: 17194218]
  32. Sci Rep. 2017 Apr 3;7(1):528 [PMID: 28373664]
  33. BMC Genomics. 2014 Aug 26;15:720 [PMID: 25159659]
  34. PLoS Genet. 2016 Feb 01;12(2):e1005767 [PMID: 26828793]
  35. Sci Rep. 2017 Feb 02;7:41457 [PMID: 28150702]
  36. Front Plant Sci. 2018 Jul 03;9:815 [PMID: 30018620]
  37. New Phytol. 2013 Jun;198(4):1121-1134 [PMID: 23517065]
  38. Genetics. 2009 Nov;183(3):1153-64 [PMID: 19737751]
  39. PLoS One. 2015 Jul 30;10(7):e0134607 [PMID: 26225861]
  40. Theor Appl Genet. 2012 Jun;125(1):1-10 [PMID: 22366867]

Grants

  1. Not applicable/Rubber Authority of Thailand, and Thammasat University.

Word Cloud

Created with Highcharts 10.0.0growthgirthcandidategenerubberassociationpolymorphismmarkerstreestudysingleSNPGirthmappingintronlengthILPCOBL064_1cellshowedbreedingnucleotideassociatedimportantfactorlatextimberproductionperformedtreesusingidentifyinggenesresponsiblemarkerdevelopedregulatingcellulosedepositionorientedexpansionplantwallstrongestacrosstwoseasonsAmazonianpopulationvalidatedlinesappliedmoleculereal-timeSMRTcircularconsensussequencingCCSanalyzewiderregionpinpointbestexplainstraits3'UTRshowinglinkagedisequilibriumcost-effectivemethodgene-basedcanassistidentificationSNPsidentifiedaddedusefulimprovementprogramsIdentificationCandidateGene-BasedMarkersGrowthRubberTrees

Similar Articles

Cited By