Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling.

Courtney Woolsey, Viktoriya Borisevich, Krystle N Agans, Karla A Fenton, Robert W Cross, Thomas W Geisbert
Author Information
  1. Courtney Woolsey: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.
  2. Viktoriya Borisevich: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.
  3. Krystle N Agans: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.
  4. Karla A Fenton: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.
  5. Robert W Cross: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.
  6. Thomas W Geisbert: Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA.

Abstract

ebolaviruses Bundibugyo virus (BDBV) and Ebola virus (EBOV) cause fatal hemorrhagic disease in humans and nonhuman primates. While the host response to EBOV is well characterized, less is known about BDBV infection. Moreover, immune signatures that mediate natural protection against all ebolaviruses remain poorly defined. To explore these knowledge gaps, we transcriptionally profiled BDBV-infected rhesus macaques, a disease model that results in incomplete lethality. This approach enabled us to identify prognostic indicators. As expected, survival (∼60%) correlated with reduced clinical pathology and circulating infectious virus, although peak viral RNA loads were not significantly different between surviving and nonsurviving macaques. Survivors had higher anti-BDBV antibody titers and transcriptionally derived cytotoxic T cell-, memory B cell-, and plasma cell-type quantities, demonstrating activation of adaptive immunity. Conversely, a poor prognosis was associated with lack of an appropriate adaptive response, sustained innate immune signaling, and higher expression of myeloid-derived suppressor cell (MDSC)-related transcripts (, , , , , and ). MDSCs are potent immunosuppressors of cellular and humoral immunity, and therefore, they represent a potential therapeutic target. Circulating plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) levels were also elevated in nonsurvivors and in survivors exhibiting severe illness, emphasizing the importance of maintaining coagulation homeostasis to control disease progression. Bundibugyo virus (BDBV) and Ebola virus (EBOV) are ebolaviruses endemic to Africa that cause severe, often fatal hemorrhagic disease. BDBV is considered a less pathogenic ebolavirus due to its reduced lethality during human outbreaks, as well as in experimentally infected nonhuman primates. The reduced mortality of BDBV in NHP models, resulting in a pool of survivors, afforded us the unique opportunity of identifying immune correlates that confer protection against ebolaviruses. In this study, we discovered that the survival of BDBV-infected nonhuman primates (NHPs) was dependent on early development of adaptive (memory) immune responses and reduced myeloid-derived suppressor cell (MDSC)-related signaling. MDSCs are a heterogenous group of immune cells implicated in a number of diseases that are powerful immunosuppressors of cellular and humoral immunity. Thus, MDSCs represent a novel therapeutic target to prevent ebolavirus disease. To our knowledge, this is the first study to link increased morbidity with recruitment of these potent immunosuppressive cells.

Keywords

References

  1. Nat Biotechnol. 2019 Jul;37(7):773-782 [PMID: 31061481]
  2. Immunity. 2015 Feb 17;42(2):239-251 [PMID: 25692700]
  3. J Immunol. 2008 Oct 1;181(7):4666-75 [PMID: 18802069]
  4. PLoS Pathog. 2008 Nov;4(11):e1000212 [PMID: 19023410]
  5. Sci Rep. 2017 Nov 7;7(1):14756 [PMID: 29116224]
  6. J Exp Med. 1997 Dec 1;186(11):1809-18 [PMID: 9382880]
  7. Nature. 2009 Aug 27;460(7259):1122-6 [PMID: 19597478]
  8. Sci Rep. 2020 Feb 20;10(1):3071 [PMID: 32080323]
  9. J Gen Virol. 2019 Jun;100(6):911-912 [PMID: 31021739]
  10. Front Immunol. 2017 Nov 17;8:1565 [PMID: 29204146]
  11. N Engl J Med. 2009 Jun 4;360(23):2426-37 [PMID: 19494218]
  12. PLoS Negl Trop Dis. 2010 Oct 05;4(10): [PMID: 20957152]
  13. Sci Rep. 2021 Jan 15;11(1):1580 [PMID: 33452298]
  14. PLoS Negl Trop Dis. 2013 Dec 19;7(12):e2600 [PMID: 24367715]
  15. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4648-57 [PMID: 25298532]
  16. Cell Host Microbe. 2017 Dec 13;22(6):817-829.e8 [PMID: 29154144]
  17. J Infect Dis. 2016 Oct 15;214(suppl 3):S275-S280 [PMID: 27521367]
  18. Front Immunol. 2017 Oct 26;8:1372 [PMID: 29123522]
  19. Science. 1999 Oct 22;286(5440):790-3 [PMID: 10531067]
  20. Bioinformatics. 2012 Feb 1;28(3):373-80 [PMID: 22135418]
  21. J Exp Med. 2020 Jul 6;217(7): [PMID: 32324863]
  22. Emerg Infect Dis. 2014 Oct;20(10):1683-90 [PMID: 25279581]
  23. Nat Immunol. 2021 Jan;22(1):86-98 [PMID: 33235385]
  24. Front Immunol. 2018 May 16;9:1060 [PMID: 29868020]
  25. J Infect Dis. 2018 Nov 22;218(suppl_5):S486-S495 [PMID: 30476250]
  26. Dev Immunol. 1998;6(3-4):285-94 [PMID: 9814602]
  27. BMC Genomics. 2016 Sep 05;17:707 [PMID: 27595844]
  28. PLoS Negl Trop Dis. 2011 Oct;5(10):e1359 [PMID: 22028943]
  29. Emerg Infect Dis. 2019 Feb;25(2):290-298 [PMID: 30666927]
  30. Nat Rev Immunol. 2021 Aug;21(8):485-498 [PMID: 33526920]
  31. J Infect Dis. 2015 Oct 1;212 Suppl 2:S91-7 [PMID: 26063223]
  32. Sci Rep. 2017 Aug 29;7(1):9730 [PMID: 28852031]
  33. J Intensive Care. 2014 Feb 20;2(1):15 [PMID: 25520831]
  34. Genome Biol. 2017 Jan 19;18(1):4 [PMID: 28100256]
  35. Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6 [PMID: 15896665]
  36. Arthritis Res Ther. 2006;8(3):R69 [PMID: 16613612]
  37. Cell. 2020 Nov 25;183(5):1383-1401.e19 [PMID: 33159858]
  38. EMBO J. 1997 Apr 15;16(8):2004-13 [PMID: 9155026]
  39. Lancet Microbe. 2021 Jan;2(1):e13-e22 [PMID: 33521734]
  40. Cell Rep. 2020 Dec 29;33(13):108571 [PMID: 33378668]
  41. Annu Rev Immunol. 2002;20:761-94 [PMID: 11861617]
  42. Cell. 2003 Mar 7;112(5):645-57 [PMID: 12628185]
  43. Immunology. 2012 Jun;136(2):176-83 [PMID: 22304731]
  44. Nat Genet. 2008 Sep;40(9):1107-12 [PMID: 19165925]
  45. J Virol. 2006 Jul;80(14):7235-44 [PMID: 16809329]
  46. J Infect Dis. 2014 Aug 15;210(4):558-66 [PMID: 24526742]
  47. J Cell Physiol. 2012 Feb;227(2):493-507 [PMID: 21465481]
  48. J Biol Chem. 1996 Mar 1;271(9):5158-63 [PMID: 8617796]
  49. Emerg Infect Dis. 2020 Nov;26(11):2625-2637 [PMID: 33079033]
  50. J Infect Dis. 2020 May 11;221(Suppl 4):S436-S447 [PMID: 32022850]
  51. J Infect Dis. 2003 Dec 1;188(11):1618-29 [PMID: 14639531]
  52. Adv Clin Exp Med. 2018 Jul;27(7):947-953 [PMID: 29905412]
  53. Nature. 2016 May 5;533(7601):100-4 [PMID: 27147028]

Grants

  1. U19 AI109711/NIAID NIH HHS
  2. U19 AI142785/NIAID NIH HHS
  3. UC7 AI094660/NIAID NIH HHS

MeSH Term

Adaptive Immunity
Africa
Animals
Antibodies, Viral
Disease Progression
Ebolavirus
Female
Hemorrhagic Fever, Ebola
Humans
Macaca mulatta
Male
Memory B Cells
Myeloid-Derived Suppressor Cells
Plasminogen Activator Inhibitor 1
Signal Transduction
Tissue Plasminogen Activator

Chemicals

Antibodies, Viral
Plasminogen Activator Inhibitor 1
Tissue Plasminogen Activator

Word Cloud

Created with Highcharts 10.0.0virusBDBVdiseaseimmunenonhumanreducedEbolaEBOVprimatesebolavirusesadaptiveimmunitymyeloid-derivedsuppressorcellMDSCsBundibugyocausefatalhemorrhagicresponsewelllessprotectionknowledgetranscriptionallyBDBV-infectedmacaqueslethalityussurvivalhighercell-memorysignalingMDSC-relatedpotentimmunosuppressorscellularhumoralrepresenttherapeutictargetplasminogenactivatorsurvivorsseverecoagulationebolavirusstudycellsEbolaviruseshumanshostcharacterizedknowninfectionMoreoversignaturesmediatenaturalremainpoorlydefinedexploregapsprofiledrhesusmodelresultsincompleteapproachenabledidentifyprognosticindicatorsexpected∼60%correlatedclinicalpathologycirculatinginfectiousalthoughpeakviralRNAloadssignificantlydifferentsurvivingnonsurvivingSurvivorsanti-BDBVantibodytitersderivedcytotoxicTBplasmacell-typequantitiesdemonstratingactivationConverselypoorprognosisassociatedlackappropriatesustainedinnateexpressiontranscriptsthereforepotentialCirculatinginhibitor1PAI-1tissuetPAlevelsalsoelevatednonsurvivorsexhibitingillnessemphasizingimportancemaintaininghomeostasiscontrolprogressionendemicAfricaoftenconsideredpathogenicduehumanoutbreaksexperimentallyinfectedmortalityNHPmodelsresultingpoolaffordeduniqueopportunityidentifyingcorrelatesconferdiscoveredNHPsdependentearlydevelopmentresponsesheterogenousgroupimplicatednumberdiseasespowerfulThusnovelpreventfirstlinkincreasedmorbidityrecruitmentimmunosuppressiveSurvivalAssociatedEarlyActivationAdaptiveImmunityReducedMyeloid-DerivedSuppressorCellSignalingfilovirusimmunologyprimatepathogenesis

Similar Articles

Cited By (15)