Machine learning in the prediction of cancer therapy.

Raihan Rafique, S M Riazul Islam, Julhash U Kazi
Author Information
  1. Raihan Rafique: Ideflod AB, Lund, Sweden.
  2. S M Riazul Islam: Department of Computer Science and Engineering, Sejong University, Seoul, South Korea.
  3. Julhash U Kazi: Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.

Abstract

Resistance to therapy remains a major cause of cancer treatment failures, resulting in many cancer-related deaths. Resistance can occur at any time during the treatment, even at the beginning. The current treatment plan is dependent mainly on cancer subtypes and the presence of genetic mutations. Evidently, the presence of a genetic mutation does not always predict the therapeutic response and can vary for different cancer subtypes. Therefore, there is an unmet need for predictive models to match a cancer patient with a specific drug or drug combination. Recent advancements in predictive models using artificial intelligence have shown great promise in preclinical settings. However, despite massive improvements in computational power, building clinically useable models remains challenging due to a lack of clinically meaningful pharmacogenomic data. In this review, we provide an overview of recent advancements in therapeutic response prediction using machine learning, which is the most widely used branch of artificial intelligence. We describe the basics of machine learning algorithms, illustrate their use, and highlight the current challenges in therapy response prediction for clinical practice.

Keywords

References

  1. Methods Mol Biol. 2021;2194:223-238 [PMID: 32926369]
  2. Bioinformatics. 2015 Jun 15;31(12):2007-16 [PMID: 25667546]
  3. Nat Rev Cancer. 2006 Oct;6(10):813-23 [PMID: 16990858]
  4. Brief Bioinform. 2020 May 21;21(3):919-935 [PMID: 31155636]
  5. Nature. 2019 May;569(7757):503-508 [PMID: 31068700]
  6. J Lab Autom. 2016 Feb;21(1):125-32 [PMID: 26160862]
  7. Nature. 2013 Dec 19;504(7480):389-93 [PMID: 24284626]
  8. Cancer. 2020 Nov 15;126(22):4838-4846 [PMID: 32931022]
  9. Elife. 2015 Aug 18;4: [PMID: 26284497]
  10. PLoS One. 2013 Apr 30;8(4):e61318 [PMID: 23646105]
  11. Bioinformatics. 2018 Nov 15;34(22):3907-3914 [PMID: 29868820]
  12. Nature. 2012 Mar 28;483(7391):603-7 [PMID: 22460905]
  13. BMC Med Genomics. 2019 Jan 31;12(Suppl 1):18 [PMID: 30704458]
  14. Comput Struct Biotechnol J. 2020 Feb 15;18:427-438 [PMID: 32153729]
  15. PLoS Comput Biol. 2011 Dec;7(12):e1002323 [PMID: 22219721]
  16. J Bioinform Comput Biol. 2019 Apr;17(2):1950012 [PMID: 31057072]
  17. Cell. 2018 Apr 5;173(2):515-528.e17 [PMID: 29625057]
  18. Abdom Radiol (NY). 2021 Jul;46(7):3184-3192 [PMID: 33675380]
  19. Front Oncol. 2020 Oct 14;10:588221 [PMID: 33154949]
  20. Sci Rep. 2020 Jun 10;10(1):9377 [PMID: 32523056]
  21. NPJ Precis Oncol. 2021 Feb 17;5(1):13 [PMID: 33597638]
  22. BMC Bioinformatics. 2020 Jul 6;21(1):288 [PMID: 32631229]
  23. Cancer Cell. 2020 Nov 9;38(5):672-684.e6 [PMID: 33096023]
  24. Bioinformatics. 2016 Jan 1;32(1):85-95 [PMID: 26351271]
  25. Cancer Res. 2010 May 1;70(9):3677-86 [PMID: 20406975]
  26. Biophys Rev. 2019 Feb;11(1):31-39 [PMID: 30097794]
  27. Nat Rev Cancer. 2007 Jan;7(1):54-60 [PMID: 17186018]
  28. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  29. CPT Pharmacometrics Syst Pharmacol. 2015 Feb;4(2):e9 [PMID: 26225234]
  30. Brief Bioinform. 2020 Dec 1;21(6):1920-1936 [PMID: 31774481]
  31. Nature. 2002 Jan 31;415(6871):530-6 [PMID: 11823860]
  32. Pac Symp Biocomput. 2014;:63-74 [PMID: 24297534]
  33. Cancer Discov. 2014 Sep;4(9):998-1013 [PMID: 25185190]
  34. Mol Cancer Ther. 2012 Nov;11(11):2505-15 [PMID: 22962324]
  35. Cancer Res. 2017 Jul 1;77(13):3564-3576 [PMID: 28446463]
  36. Cancer Discov. 2013 Jan;3(1):52-67 [PMID: 23239741]
  37. IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):575-582 [PMID: 31150344]
  38. Cancer Cell. 2016 Apr 11;29(4):574-586 [PMID: 27070704]
  39. Brief Bioinform. 2019 May 21;20(3):778-788 [PMID: 29272324]
  40. NPJ Syst Biol Appl. 2019 Feb 26;5:6 [PMID: 30820351]
  41. BMC Bioinformatics. 2018 Dec 21;19(Suppl 18):486 [PMID: 30577754]
  42. J Am Med Inform Assoc. 2013 Jul-Aug;20(4):597-602 [PMID: 23355484]
  43. Cancers (Basel). 2020 Nov 26;12(12): [PMID: 33256107]
  44. PLoS Comput Biol. 2017 Jan 13;13(1):e1005308 [PMID: 28085880]
  45. JCO Clin Cancer Inform. 2020 Nov;4:1051-1058 [PMID: 33197205]
  46. Sci Rep. 2018 Feb 20;8(1):3355 [PMID: 29463808]
  47. Nat Commun. 2018 Jan 3;9(1):42 [PMID: 29298978]
  48. Nat Med. 2015 Nov;21(11):1318-25 [PMID: 26479923]
  49. Cancer Sci. 2020 May;111(5):1452-1460 [PMID: 32133724]
  50. Mol Cancer Ther. 2016 Jun;15(6):1155-62 [PMID: 26983881]
  51. Nat Biotechnol. 2015 Mar;33(3):306-12 [PMID: 25485619]
  52. Nucleic Acids Res. 2020 Jan 8;48(D1):D871-D881 [PMID: 31665429]
  53. Cancer Lett. 2020 Jul 1;481:55-62 [PMID: 32251707]
  54. J Med Syst. 2002 Oct;26(5):445-63 [PMID: 12182209]
  55. Comput Struct Biotechnol J. 2014 Nov 15;13:8-17 [PMID: 25750696]
  56. Nat Rev Clin Oncol. 2019 Nov;16(11):703-715 [PMID: 31399699]
  57. Cell. 2013 Aug 29;154(5):1151-1161 [PMID: 23993102]
  58. Front Bioeng Biotechnol. 2019 Nov 26;7:358 [PMID: 32039167]
  59. Nucleic Acids Res. 2021 Jan 8;49(D1):D1083-D1093 [PMID: 33196823]
  60. Comput Struct Biotechnol J. 2015 Sep 25;13:504-13 [PMID: 26949479]
  61. Nature. 2016 May 18;533(7603):333-7 [PMID: 27193678]
  62. Sci Rep. 2014 Nov 24;4:7160 [PMID: 25418113]
  63. Cell. 2015 May 7;161(4):933-45 [PMID: 25957691]
  64. Nat Commun. 2015 Sep 28;6:8481 [PMID: 26412466]
  65. Cell Syst. 2015 Dec 23;1(6):383-95 [PMID: 27136353]
  66. Nat Commun. 2019 Jun 17;10(1):2674 [PMID: 31209238]
  67. Pac Symp Biocomput. 2018;23:80-91 [PMID: 29218871]
  68. Bioinformatics. 2018 May 1;34(9):1538-1546 [PMID: 29253077]
  69. Bioinformatics. 2017 Jul 15;33(14):i359-i368 [PMID: 28881998]
  70. J Clin Oncol. 2009 Mar 10;27(8):1160-7 [PMID: 19204204]
  71. Clin Epigenetics. 2020 Apr 3;12(1):51 [PMID: 32245523]
  72. Front Pharmacol. 2020 Aug 12;11:1177 [PMID: 32903628]
  73. Front Oncol. 2020 Jun 30;10:1030 [PMID: 32695678]
  74. Artif Intell Med. 2017 Nov;83:35-43 [PMID: 28583437]
  75. J Chem Inf Model. 2020 Oct 26;60(10):4497-4505 [PMID: 32804489]
  76. Expert Rev Mol Diagn. 2006 Nov;6(6):803-9 [PMID: 17140367]
  77. Database (Oxford). 2014 Dec 23;2014:bau124 [PMID: 25539768]
  78. Cell Syst. 2021 Feb 17;12(2):128-140.e4 [PMID: 33373583]
  79. Methods Mol Biol. 2018;1711:351-398 [PMID: 29344898]
  80. Sci Rep. 2020 Jun 12;10(1):9522 [PMID: 32533004]
  81. Nat Commun. 2020 Oct 30;11(1):5485 [PMID: 33127883]
  82. Bioinformatics. 2018 Jan 15;34(2):319-320 [PMID: 28968749]
  83. Oncology. 2020;98(6):329-331 [PMID: 32408309]
  84. J Biomed Inform. 2018 Sep;85:149-154 [PMID: 30081101]
  85. Bioinformatics. 2018 Apr 15;34(8):1353-1362 [PMID: 29186355]
  86. Expert Rev Clin Pharmacol. 2018 Aug;11(8):797-804 [PMID: 30044653]
  87. IEEE/ACM Trans Comput Biol Bioinform. 2021 Feb 19;PP: [PMID: 33606633]
  88. NPJ Precis Oncol. 2019 Feb 25;3:6 [PMID: 30820462]
  89. Bioinformatics. 2011 Jul 1;27(13):i310-6 [PMID: 21685086]
  90. BMC Genomics. 2014;15 Suppl 7:S2 [PMID: 25573145]
  91. Mol Pharm. 2016 Jul 5;13(7):2524-30 [PMID: 27200455]
  92. Curr Genet Med Rep. 2019 Dec;7(4):208-213 [PMID: 31871830]
  93. Sci Rep. 2018 Jun 11;8(1):8857 [PMID: 29891981]
  94. Kidney Dis (Basel). 2019 Feb;5(1):18-22 [PMID: 30815460]
  95. NPJ Precis Oncol. 2020 Jun 15;4:19 [PMID: 32566759]
  96. Nature. 2016 Nov 30;540(7631):E5-E6 [PMID: 27905421]
  97. Nat Biotechnol. 2012 Nov;30(11):1125-30 [PMID: 23064238]
  98. IEEE Trans Neural Netw. 2001;12(2):181-201 [PMID: 18244377]
  99. Brief Bioinform. 2020 Dec 1;21(6):2066-2083 [PMID: 31813953]
  100. J Chem Inf Comput Sci. 2004 Jan-Feb;44(1):76-87 [PMID: 14741013]
  101. Cancer Lett. 2020 Feb 28;471:61-71 [PMID: 31830558]
  102. J Bioinform Comput Biol. 2005 Apr;3(2):185-205 [PMID: 15852500]
  103. Cell Rep. 2019 Dec 10;29(11):3367-3373.e4 [PMID: 31825821]
  104. Arzneimittelforschung. 1953 Jun;3(6):285-90 [PMID: 13081480]
  105. Nucleic Acids Res. 2018 Jan 4;46(D1):D994-D1002 [PMID: 30053271]
  106. BMC Bioinformatics. 2019 Dec 24;20(Suppl 15):538 [PMID: 31874609]
  107. J Chem Inf Model. 2014 Aug 25;54(8):2347-59 [PMID: 25046554]
  108. Bioinformatics. 2019 Oct 1;35(19):3743-3751 [PMID: 30850846]
  109. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  110. Bioinformatics. 2019 Jul 15;35(14):i501-i509 [PMID: 31510700]
  111. Nature. 2012 Mar 28;483(7391):570-5 [PMID: 22460902]
  112. CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):544-553 [PMID: 27567007]
  113. Cancer Discov. 2015 Nov;5(11):1210-23 [PMID: 26482930]
  114. Front Cell Dev Biol. 2020 Feb 11;8:48 [PMID: 32117976]
  115. BMC Bioinformatics. 2019 Jul 29;20(1):408 [PMID: 31357929]
  116. J Am Med Inform Assoc. 2014 Oct;21(e2):e278-86 [PMID: 24644270]
  117. Genome Biol. 2014 Mar 03;15(3):R47 [PMID: 24580837]
  118. Bioinformatics. 2021 May 23;37(8):1115-1124 [PMID: 33305308]
  119. iScience. 2018 Dec 21;10:247-264 [PMID: 30553813]
  120. BMC Syst Biol. 2016 Aug 15;10(1):74 [PMID: 27526853]
  121. Expert Opin Drug Discov. 2021 Feb 12;:1-13 [PMID: 33543671]
  122. Nature. 2015 Dec 3;528(7580):84-7 [PMID: 26570998]
  123. Nucleic Acids Res. 2019 Jan 8;47(D1):D1073-D1079 [PMID: 30535239]
  124. Nat Biotechnol. 2014 Dec;32(12):1213-22 [PMID: 25419740]
  125. PLoS Comput Biol. 2019 May 20;15(5):e1006752 [PMID: 31107860]
  126. Cancers (Basel). 2020 Mar 05;12(3): [PMID: 32150991]
  127. AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:247-256 [PMID: 28815138]
  128. Nat Commun. 2017 Oct 24;8(1):1126 [PMID: 29066719]
  129. Bioinformatics. 2016 Sep 15;32(18):2866-8 [PMID: 27153664]
  130. Bioinformatics. 2014 Sep 1;30(17):i556-63 [PMID: 25161247]
  131. Cancer Res. 2019 Sep 1;79(17):4539-4550 [PMID: 31142512]
  132. Nat Biotechnol. 2014 Dec;32(12):1202-12 [PMID: 24880487]
  133. Nat Commun. 2020 Dec 1;11(1):6136 [PMID: 33262326]
  134. PLoS Comput Biol. 2021 Feb 12;17(2):e1008653 [PMID: 33577560]
  135. Nucleic Acids Res. 2019 Jul 2;47(W1):W43-W51 [PMID: 31066443]
  136. PLoS Comput Biol. 2015 Sep 29;11(9):e1004498 [PMID: 26418249]
  137. Ecancermedicalscience. 2020 Jun 30;14:1065 [PMID: 32728381]
  138. PLoS One. 2014 Jul 16;9(7):e102221 [PMID: 25029499]
  139. Cell. 2016 Jul 28;166(3):740-754 [PMID: 27397505]

Word Cloud

Created with Highcharts 10.0.0cancerpredictionmachinelearningnetworktherapytreatmentresponsemodelsintelligenceneuralResistanceremainscancurrentsubtypespresencegenetictherapeuticpredictivedrugadvancementsusingartificialclinicallyDeepDrugfactorizationmachinesmajorcausefailuresresultingmanycancer-relateddeathsoccurtimeevenbeginningplandependentmainlymutationsEvidentlymutationalwayspredictvarydifferentThereforeunmetneedmatchpatientspecificcombinationRecentshowngreatpromisepreclinicalsettingsHoweverdespitemassiveimprovementscomputationalpowerbuildinguseablechallengingduelackmeaningfulpharmacogenomicdatareviewprovideoverviewrecentwidelyusedbranchdescribebasicsalgorithmsillustrateusehighlightchallengesclinicalpracticeMachineArtificialConvolutionalcombinationssynergyElasticnetFactorizationGraphconvolutionalHigher-orderLassoMatrixMonotherapyOrdinarydifferentialequationRandomforestsRestrictedBoltzmannRidgeregressionSupportvectorVariationalautoencoderVisible

Similar Articles

Cited By