Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode-solution interfaces.

Dhritiman Bhattacharyya, Pablo E Videla, Mauricio Cattaneo, Victor S Batista, Tianquan Lian, Clifford P Kubiak
Author Information
  1. Dhritiman Bhattacharyya: Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA tlian@emory.edu. ORCID
  2. Pablo E Videla: Department of Chemistry and Energy Sciences Institute, Yale University 225 Prospect Street New Haven Connecticut 06520 USA victor.batista@yale.edu.
  3. Mauricio Cattaneo: INQUINOA-UNT-CONICET, Facultad de Bioquímica, Química y Farmacia, Instituto de Química Física, Universidad Nacional de Tucumán Ayacucho 471 (4000) San Miguel de Tucumán Argentina.
  4. Victor S Batista: Department of Chemistry and Energy Sciences Institute, Yale University 225 Prospect Street New Haven Connecticut 06520 USA victor.batista@yale.edu.
  5. Tianquan Lian: Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA tlian@emory.edu. ORCID
  6. Clifford P Kubiak: Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, MC 0358 La Jolla California 92093 USA ckubiak@ucsd.edu. ORCID

Abstract

External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces.

References

  1. Acc Chem Res. 2019 May 21;52(5):1289-1300 [PMID: 31056907]
  2. Chem Sci. 2020 Sep 12;11(38):10304-10312 [PMID: 34094294]
  3. Phys Chem Chem Phys. 2011 Apr 21;13(15):6849-57 [PMID: 21399819]
  4. J Phys Chem Lett. 2019 Sep 19;10(18):5434-5439 [PMID: 31442376]
  5. J Am Chem Soc. 2015 Feb 18;137(6):2400-8 [PMID: 25625429]
  6. Chem Sci. 2020 May 18;11(39):10807-10813 [PMID: 34094335]
  7. Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):323-346 [PMID: 31038984]
  8. Acc Chem Res. 2004 Apr;37(4):261-7 [PMID: 15096063]
  9. J Am Chem Soc. 2013 Jul 31;135(30):11257-65 [PMID: 23837635]
  10. Science. 2006 Jul 14;313(5784):200-4 [PMID: 16840693]
  11. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  12. Anal Chem. 1992 Oct;64(20):2398-405 [PMID: 19827817]
  13. J Am Chem Soc. 2019 Sep 11;141(36):14160-14167 [PMID: 31353897]
  14. Nature. 2016 Mar 3;531(7592):88-91 [PMID: 26935697]
  15. J Phys Chem B. 2010 Oct 28;114(42):13536-44 [PMID: 20883003]
  16. Science. 2011 Nov 4;334(6056):643-4 [PMID: 21960532]
  17. J Phys Chem B. 2012 Apr 5;116(13):4034-42 [PMID: 22417088]
  18. Chem Commun (Camb). 2007 Nov 7;(41):4280-2 [PMID: 18217605]
  19. J Phys Chem B. 2020 Feb 20;124(7):1311-1321 [PMID: 31985221]
  20. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  21. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  22. Annu Rev Phys Chem. 2015 Apr;66:189-216 [PMID: 25493712]
  23. J Phys Chem Lett. 2017 Feb 16;8(4):825-830 [PMID: 28151677]
  24. J Am Chem Soc. 2018 Dec 19;140(50):17643-17655 [PMID: 30468391]
  25. Chem Rev. 2019 Jun 26;119(12):7610-7672 [PMID: 31117420]
  26. Chem Sci. 2015 May 1;6(5):3268 [PMID: 30124683]
  27. J Am Chem Soc. 2011 May 11;133(18):6922-5 [PMID: 21504161]
  28. J Chem Phys. 2009 May 28;130(20):204704 [PMID: 19485472]
  29. Phys Chem Chem Phys. 2017 Apr 19;19(16):10491-10501 [PMID: 28383582]
  30. ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33678-33683 [PMID: 30187745]
  31. J Am Chem Soc. 2002 Mar 20;124(11):2796-805 [PMID: 11890832]
  32. J Am Chem Soc. 2011 Dec 7;133(48):19270-3 [PMID: 22044066]
  33. J Chem Phys. 2020 Mar 21;152(11):114706 [PMID: 32199414]
  34. J Am Chem Soc. 2007 Aug 22;129(33):10056-7 [PMID: 17661466]
  35. Chem Soc Rev. 2015 Nov 7;44(21):7484-539 [PMID: 26050756]
  36. J Am Chem Soc. 2016 Feb 17;138(6):1820-3 [PMID: 26804469]
  37. J Am Chem Soc. 2013 Jan 16;135(2):717-25 [PMID: 23210919]
  38. J Am Chem Soc. 2017 Feb 15;139(6):2369-2378 [PMID: 28103437]
  39. Acc Chem Res. 2019 Dec 17;52(12):3432-3441 [PMID: 31714746]
  40. Annu Rev Phys Chem. 1997;48:213-42 [PMID: 9348658]
  41. Front Chem. 2020 Feb 13;8:86 [PMID: 32117901]
  42. J Phys Chem B. 2013 Dec 19;117(50):16236-48 [PMID: 24304155]
  43. ACS Cent Sci. 2019 May 22;5(5):831-841 [PMID: 31139719]
  44. J Am Chem Soc. 2017 Mar 22;139(11):4035-4041 [PMID: 28225605]
  45. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  46. Phys Chem Chem Phys. 2014 Apr 14;16(14):6519-38 [PMID: 24589998]
  47. J Am Chem Soc. 2008 Feb 20;130(7):2271-5 [PMID: 18217755]
  48. J Am Chem Soc. 2018 Jan 24;140(3):1004-1010 [PMID: 29216428]
  49. J Chem Phys. 2019 Oct 28;151(16):160902 [PMID: 31675864]
  50. Chem Rev. 2020 Aug 12;120(15):7152-7218 [PMID: 32598850]
  51. J Phys Chem B. 2005 Jul 14;109(27):13049-51 [PMID: 16852620]
  52. Chem Soc Rev. 2012 Jan 21;41(2):797-828 [PMID: 21779609]
  53. Chem Rev. 1947 Dec;41(3):441-501 [PMID: 18895519]
  54. Inorg Chem. 2016 Nov 7;55(21):10831-10834 [PMID: 27934298]
  55. Chemphyschem. 2010 Jan 18;11(1):301-10 [PMID: 19998402]
  56. J Phys Chem Lett. 2019 Apr 18;10(8):1757-1762 [PMID: 30908051]
  57. Nature. 2021 Jun;594(7861):62-65 [PMID: 34079138]
  58. Phys Chem Chem Phys. 2011 May 7;13(17):7675-84 [PMID: 21327203]
  59. Science. 2020 Oct 9;370(6513):214-219 [PMID: 33033217]
  60. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  61. J Chem Phys. 2015 Oct 7;143(13):134112 [PMID: 26450297]
  62. J Am Chem Soc. 2014 Jul 23;136(29):10349-60 [PMID: 24977791]
  63. ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26515-26524 [PMID: 32406227]
  64. J Am Chem Soc. 2002 Mar 20;124(11):2408-9 [PMID: 11890768]
  65. J Phys Chem Lett. 2011 Feb 21;2011(2):553-556 [PMID: 21423871]

Word Cloud

Created with Highcharts 10.0.0catalystselectrodecontrolchemicalspectroscopymolecularsurfacesprocessesresearchelectrochemicalinterfaceelectricfieldsVSFGresponsebiasStarkshiftExternalsubjectwidespreadinterestincludingelectrocatalyticsignificantpromiseenergydouble-layernanoscaleregionnextelectrode/electrolytereactionstypicallyoccurUnderstandingeffectswithindoublelayerrequirescombinationsynthesiselectrochemistrytheoryparticularvibrationalsumfrequencygenerationpowerfultechniqueprobeFundamentalunderstandingcanobtainedsynthetictuningadsorbedsurfacecombiningexperimentaldatatheoreticalmodellingresultinginsightslevelparticularlyvaluabledevelopmentnewmethodologiescharacterizeconfinedPerspectivearticlefocusedsystematicmodificationsmoleculesanchoredreportinformationconcerninggeometricenergeticelectronicparametersattachedVibrationalinfluenceelectrode-solutioninterfaces

Similar Articles

Cited By