The switch of DNA states filtering the extrinsic noise in the system of frequency modulation.

Shih-Chiang Lo, Chao-Xuan You, Bo-Ren Chen, Ching-Chu Hsieh, Cheng-En Li, Che-Chi Shu
Author Information
  1. Shih-Chiang Lo: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan.
  2. Chao-Xuan You: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan.
  3. Bo-Ren Chen: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan.
  4. Ching-Chu Hsieh: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan.
  5. Cheng-En Li: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan.
  6. Che-Chi Shu: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Sec. 3, Chung-Hsiao E. Road, Taipei City, 10608, Taiwan. cshu@ntut.edu.tw.

Abstract

There is a special node, which the large noise of the upstream element may not always lead to a broad distribution of downstream elements. This node is DNA, with upstream element TF and downstream elements mRNA and proteins. By applying the stochastic simulation algorithm (SSA) on gene circuits inspired by the fim operon in Escherichia coli, we found that cells exchanged the distribution of the upstream transcription factor (TF) for the transitional frequency of DNA. Then cells do an inverse transform, which exchanges the transitional frequency of DNA for the distribution of downstream products. Due to this special feature, DNA in the system of frequency modulation is able to reset the noise. By probability generating function, we know the ranges of parameter values that grant such an interesting phenomenon.

References

  1. ACS Synth Biol. 2015 Feb 20;4(2):116-25 [PMID: 24735052]
  2. Cell Syst. 2018 Oct 24;7(4):384-397.e6 [PMID: 30243562]
  3. Nat Genet. 2002 May;31(1):69-73 [PMID: 11967532]
  4. Sci Rep. 2016 Feb 04;6:20319 [PMID: 26843321]
  5. Nucleic Acids Res. 2019 Jun 20;47(11):5617-5633 [PMID: 31216039]
  6. Science. 2005 Mar 25;307(5717):1965-9 [PMID: 15790857]
  7. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8372-7 [PMID: 16714385]
  8. Elife. 2019 Mar 19;8: [PMID: 30888317]
  9. BMC Syst Biol. 2015 Dec 09;9:91 [PMID: 26646617]
  10. Sci Rep. 2017 Jun 30;7(1):4413 [PMID: 28667253]
  11. Science. 2005 Mar 25;307(5717):1962-5 [PMID: 15790856]
  12. Nat Commun. 2018 Apr 23;9(1):1605 [PMID: 29686282]
  13. Sci Rep. 2016 Aug 19;6:31505 [PMID: 27539010]
  14. Nature. 2010 Sep 2;467(7311):82-5 [PMID: 20811456]
  15. PLoS Genet. 2010 Nov 04;6(11):e1001185 [PMID: 21079670]
  16. Nat Rev Genet. 2005 Jun;6(6):451-64 [PMID: 15883588]
  17. Science. 2004 Sep 10;305(5690):1622-5 [PMID: 15308767]
  18. J Comput Biol. 2019 Jan;26(1):86-95 [PMID: 30204477]
  19. PLoS Comput Biol. 2011 Mar;7(3):e1001101 [PMID: 21423718]
  20. PLoS One. 2013 Nov 13;8(11):e79196 [PMID: 24232571]
  21. Sci Rep. 2019 Mar 4;9(1):3405 [PMID: 30833660]
  22. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7148-53 [PMID: 10852944]
  23. Nat Commun. 2019 Jun 3;10(1):2418 [PMID: 31160574]
  24. Sci Rep. 2017 Apr 3;7(1):532 [PMID: 28373704]
  25. Nat Rev Genet. 2019 Sep;20(9):536-548 [PMID: 31114032]
  26. Nature. 2008 Sep 25;455(7212):485-90 [PMID: 18818649]
  27. Science. 2011 Apr 22;332(6028):472-4 [PMID: 21415320]
  28. J Mol Biol. 2010 Feb 12;396(1):230-44 [PMID: 19931280]
  29. Nucleic Acids Res. 2010 May;38(8):2712-26 [PMID: 20211838]
  30. Mol Syst Biol. 2020 May;16(5):e9335 [PMID: 32407587]
  31. PLoS One. 2016 Dec 2;11(12):e0167563 [PMID: 27911933]
  32. Nature. 2000 Jun 1;405(6786):590-3 [PMID: 10850721]
  33. J Chem Phys. 2013 Oct 14;139(14):144108 [PMID: 24116604]
  34. Phys Biol. 2007 Mar 16;4(1):29-37 [PMID: 17406083]
  35. Cell Syst. 2018 Apr 25;6(4):409-423.e11 [PMID: 29454937]
  36. Science. 2014 Jun 20;344(6190):1392-6 [PMID: 24903562]
  37. Nat Commun. 2014 Aug 04;5:4574 [PMID: 25087841]
  38. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3581-6 [PMID: 15738412]
  39. Nat Genet. 2008 Apr;40(4):471-5 [PMID: 18362885]
  40. Nat Commun. 2016 Feb 02;7:10417 [PMID: 26832815]
  41. Mol Syst Biol. 2006;2:41 [PMID: 16883354]
  42. Genome Res. 2015 Nov;25(11):1703-14 [PMID: 26335633]
  43. Cell. 1985 Sep;42(2):549-58 [PMID: 3161621]

MeSH Term

Computer Simulation
DNA
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Operon
Transcription Factors
Transcription, Genetic

Chemicals

Escherichia coli Proteins
Transcription Factors
DNA

Word Cloud

Created with Highcharts 10.0.0DNAfrequencynoiseupstreamdistributiondownstreamspecialnodeelementelementsTFcellstransitionalsystemmodulationlargemayalwaysleadbroadmRNAproteinsapplyingstochasticsimulationalgorithmSSAgenecircuitsinspiredfimoperonEscherichiacolifoundexchangedtranscriptionfactorinversetransformexchangesproductsDuefeatureableresetprobabilitygeneratingfunctionknowrangesparametervaluesgrantinterestingphenomenonswitchstatesfilteringextrinsic

Similar Articles

Cited By