Exposure to Lead Nitrate Alters Growth and Haematological Parameters of Milkfish (Chanos chanos).

Ilham Zulfahmi, Alfinatul Rahmi, Muliari Muliari, Yusrizal Akmal, Epa Paujiah, Kizar Ahmed Sumon, Mohammad Mahmudur Rahman
Author Information
  1. Ilham Zulfahmi: Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia. ilham.zulfahmi@unsyiah.ac.id. ORCID
  2. Alfinatul Rahmi: Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia.
  3. Muliari Muliari: Department of Aquaculture, Faculty of Agriculture, Almuslim University, Bireuen, 24261, Indonesia.
  4. Yusrizal Akmal: Department of Aquaculture, Faculty of Agriculture, Almuslim University, Bireuen, 24261, Indonesia.
  5. Epa Paujiah: Department of Biology Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Sunan Gunung Djati, Bandung, 40614, Indonesia.
  6. Kizar Ahmed Sumon: Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
  7. Mohammad Mahmudur Rahman: Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.

Abstract

To date, the effects of lead on the growth and haematological parameters of milkfish are still not well understood. For this reason the present study seeks to explain this conundrum. Sub-adult female milkfish were exposed to four concentrations of lead nitrate (0 mg/l, 42.64 mg/l, 63.97 mg/l and 85.29 mg/l) for 40 days. Results revealed that exposure to lead nitrate caused significant changes in growth and haematological parameters of milkfish. Weight gain, length gain, specific growth rate, feed efficiency, and feed conversion ratio of milkfish declined significantly at the highest concentration treatment. Moreover, lead nitrate exposure significantly decreased the value of red blood cells, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration, along with a marked increase in mean corpuscular volume and mean corpuscular hemoglobin. Several erythrocyte malformations to cells including swelling, deformation, doubling, binucleus, laceration of the membrane, hemolyzation and vacuolation were all observed.

Keywords

References

  1. Abdel-Warith AWA, Younis ESM, Al-Asgah NA, Rady AM, Allam HY (2020) Bioaccumulation of lead nitrate in tissues and its effects on hematological and biochemical parameters of Clarias gariepinus. Saudi J Biol Sci 27:840–845. https://doi.org/10.1016/j.sjbs.2020.01.015 [DOI: 10.1016/j.sjbs.2020.01.015]
  2. Adakole JA (2012) Changes in some haematological parameters of the African catfish (Clarias gariepinus) exposed to a metal finishing company effluent. Indian J Sci Technol 5:2510–2514
  3. Adeshina I, Emikpe BO, Jenyo-Oni A, Ajani EK, Abubakar MI (2019) Haematology, plasma biochemistry and serum of table size African catfish, Clarias gariepinus, naturally infected with Listeria species in Oyo State. Comp Clin Path 29:69–73. https://doi.org/10.1007/s00580-019-03034-6 [DOI: 10.1007/s00580-019-03034-6]
  4. Adeyemo OK (2007) Haematological profile of Clarias gariepinus (Burchell, 1822) exposed to lead. Turkish J Fish Aquat Sci 7:163–169
  5. Al-Akel AS, Al-Balawi HA, Al-Misned F, Mahboob S, Ahmad Z, Suliman EM (2010) Effects of dietary copper exposure on accumulation, growth, and hematological parameters in Cyprinus carpio. Toxicol Environ Chem 92:1865–1878. https://doi.org/10.1080/02772248.2010.486230 [DOI: 10.1080/02772248.2010.486230]
  6. Al-Asgah NA, Abdel-Wahab A, Abdel-Warith E-S, Younis AHY (2015) Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J Biol Sci 22:543–550. https://doi.org/10.1016/j.sjbs.2015.01.002 [DOI: 10.1016/j.sjbs.2015.01.002]
  7. Ayegbusi OE, Aladesanmi OT, Kosemani OE, Adewusi OA (2018) Effects of lead chloride on growth performance of Clarias gariepinus (Burchell, 1822). Int J Bioassays 7:5638–5644. https://doi.org/10.21746/ijbio.2018.7.5.2
  8. Bhattacharjee D, Das S (2017) Microscopic studies on erythrocytes of Channa punctata exposed to commercial grade lindane. Braz Arch Biol Technol 60:1–10. https://doi.org/10.1590/1678-4324-2017160341 [DOI: 10.1590/1678-4324-2017160341]
  9. Bojarski B, Lutnicka H, Swadźba-Karbowy M, Makulska J, Jakubiak M, Pawlak K, Tombarkiewicz B, Witeska M (2018) Effects of herbicides pendimethalin and ethofumesate on common carp (Cyprinus carpio) erythrocyte morphology. Folia Biol 66:143–149. https://doi.org/10.3409/fb_66-3.15 [DOI: 10.3409/fb_66-3.15]
  10. Cai Y, Yin Y, Li Y, Guan L, Zhang P, Qin Y, Wang Y, Li Y (2020) Cadmium exposure affects growth performance, energy metabolism, and neuropeptide expression in Carassius auratus gibelio. Fish Physiol Biochem 46:187–197. https://doi.org/10.1007/s10695-019-00709-3 [DOI: 10.1007/s10695-019-00709-3]
  11. da Silva EB, da Silva Corrêa SA, de Souza Abessa DM, da Silva BFX, Rivero DHRF, Seriani R (2018) Mucociliary transport, differential white blood cells, and cyto-genotoxicity in peripheral erythrocytes in fish from a polluted urban pond. Environ Sci Pollut Res 25(3):2683–2690 [DOI: 10.1007/s11356-017-0729-0]
  12. Darafsh F, Mashinchian A, Fatemi M, Jamili S (2008) Study of the application of fish scale as bioindicator of heavy metal pollution (Pb, Zn) in the Cyprinus carpio of the Caspian Sea. Res J Environ Sci 2:438–444. https://doi.org/10.3923/rjes.2008.438.444 [DOI: 10.3923/rjes.2008.438.444]
  13. Dos Santos CR, Cavalcante ALM, Hauser-Davis RA, Lopes RM, Da Costa RDCO (2016) Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia. Ecotoxicol Environ Saf 129:250–256. https://doi.org/10.1016/j.ecoenv.2016.03.028 [DOI: 10.1016/j.ecoenv.2016.03.028]
  14. Dube KV, Magar RS (2013) Effect of lead nitrate on the haematological parameters of Channa punctatus. Int Multidiscip Res J 3:1–3
  15. Dutta B, Sarma SR, Deka P (2015) Lead nitrate toxicity on haematological changes in a live fish species Channa punctatus (Bloch). Int J Fish Aquac Stud 3:196–198
  16. Fawwaz M, Labasy L, Saleh A, Mandati SS, Pratama M (2019) Determination of mercury (Hg) and lead (Pb) content in selected milkfish from fishponds around Pampang-Makassar River. Int Food Res J 26:689–693
  17. Fazio F (2019) Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500:237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030 [DOI: 10.1016/j.aquaculture.2018.10.030]
  18. Fernández B, Martínez-Gómez C, Benedicto J (2015) Delta-aminolevulinic acid dehydratase activity (ALA-D) in red mullet (Mullus barbatus) from Mediterranean waters as biomarker of lead exposure. Ecotoxicol Environ Saf 115:209–216. https://doi.org/10.1016/j.ecoenv.2015.02.023 [DOI: 10.1016/j.ecoenv.2015.02.023]
  19. Gautam GJ, Chaube R (2018) Differential effects of heavy metals (cadmium, cobalt, lead and mercury) on oocyte maturation and ovulation of the Catfish Heteropneustes fossilis: an In Vitro Study. Turk J Fish Aquat Sci 18:1205–1214. https://doi.org/10.4194/1303-2712-v18_10_07 [DOI: 10.4194/1303-2712-v18_10_07]
  20. Ghayyur S, Tabassum S, Ahmad MS, Akhtar N, Khan MF (2019) Effect of chlorpyrifos on hematological and seral biochemical components of fish Oreochromis mossambicus. Pak J Zool 51:1047–1052. https://doi.org/10.17582/journal.pjz/2019.51.3.1047.1052 .
  21. Ghiasi F, Miszargar SS, Badakhsan H, Shamsi S (2010) Effect of low concentration of cadmium on the level of lysozyme in serum, leukocyte count and phagocytic index in Cyprinus carpio under the wintering condition. J Fish Aquat Sci 5:113–119. https://doi.org/10.3923/jfas.2010.113.119 [DOI: 10.3923/jfas.2010.113.119]
  22. Ghosh K, Indra N (2018) Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environ Toxicol Pharmacol 59:43–52. https://doi.org/10.1016/j.etap.2018.02.009 [DOI: 10.1016/j.etap.2018.02.009]
  23. Gross WB, Siegel HB (1983) Evaluation of the heterofil/lymphocite ratio of measure in chickens. Avian Dis 27:972–979 [DOI: 10.2307/1590198]
  24. Han JM, Park HJ, Kim JH, Jeong DS, Kang JC (2019) Toxic effects of arsenic on growth, hematological parameters, and plasma components of starry flounder, Platichthys stellatus, at two water temperature conditions. J Fish Aquat Sci 22:1–8. https://doi.org/10.1186/s41240-019-0116-5 [DOI: 10.1186/s41240-019-0116-5]
  25. Hesni MA, Sohrab AD, Savari A, Mortazavi MS (2011) Study the acute toxicity of lead nitrate metal salt on behavioral changes of the milkfish (Chanos chanos). World J Fish Marine Sci 3:496–501
  26. Houwen B (2002) Blood film preparation and staining procedures. Clin Lab Med 22:1–14. https://doi.org/10.1016/s0272-2712(03)00064-7 [DOI: 10.1016/s0272-2712(03)00064-7]
  27. Ikhimioya I, Imasuen JA (2007) Blood profile of west African dwarf goats fed Panicum maximum supplemented with Afzelia Africana and Newbouldia leavis. Pak J Nutr 6:79–84. https://doi.org/10.3923/pjn.2007.79.84 [DOI: 10.3923/pjn.2007.79.84]
  28. Ismail M, Ali R, Shahid M, Khan MA, Zubair M, Ali T, Mahmood Khan Q (2018) Genotoxic and hematological effects of chlorpyrifos exposure on freshwater fish Labeo rohita. Drug Chem Toxicol 41:22–26. https://doi.org/10.1080/01480545.2017.1280047 [DOI: 10.1080/01480545.2017.1280047]
  29. Kang JC, Seong-Gil K, Suck-Woo J (2005) Growth and hematological changes of Rockfish, Sebastes schlegeli (Hilgendorf) eto dietary Cu and Cd. J World Aquac Soc 36:188–195. https://doi.org/10.1111/j.1749-7345.2005.tb00384.x [DOI: 10.1111/j.1749-7345.2005.tb00384.x]
  30. Kaviani EF, Naeemi AS, Salehzadeh A (2019) Influence of copper oxide nanoparticle on hematology and plasma biochemistry of Caspian Trout (Salmo trutta caspius), following acute and chronic exposure. Pollution 5:225–234. https://doi.org/10.22059/POLL.2018.251034.383 .
  31. Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in Mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27:77–87. https://doi.org/10.1080/08997659.2014.1001533 [DOI: 10.1080/08997659.2014.1001533]
  32. Kim SG, Kang JC (2004) Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Mar Environ Res 58:65–82. https://doi.org/10.1016/j.marenvres.2003.12.004 [DOI: 10.1016/j.marenvres.2003.12.004]
  33. Ko HD, Hee-Ju P, Ju-Chan K (2019) Change of growth performance, hematological parameters, and plasma component by hexavalent chromium exposure in starry flounder, Platichthys Stellatus. Fish Aquatic Sci 22:1–7. https://doi.org/10.1186/s41240-019-0124-5 [DOI: 10.1186/s41240-019-0124-5]
  34. Kondera E, Witeska M, Ługowska K (2019) Annual changes in hematological parameters of common carp juveniles under laboratory conditions. Anim Sci 58:143–151
  35. Kumar R, Banerjee TK (2016) Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicol Rep 6:148–152. https://doi.org/10.1016/j.toxrep.2016.01.001 [DOI: 10.1016/j.toxrep.2016.01.001]
  36. Lamidi IY, Hudu MG, Akefe IO, Adamu S, Salihu SI (2020) Sub-chronic administration of flavonoid fraction Daflon improve lead-induced alterations in delta-aminolevulinic acid dehydratase activity, erythrocytic parameters, and erythrocyte osmotic fragility in wistar rats. Comp Clin Pathol 29:955–963 [DOI: 10.1007/s00580-020-03144-6]
  37. Lionetto MG, Caricato R, Erroi E, Giordano ME, Schettino T (2006) Potential application of carbonic anhydrase activity in bioassay and biomarker studies. Chem Ecol 22:S119–S125. https://doi.org/10.1080/02757540600670661 [DOI: 10.1080/02757540600670661]
  38. Łuszczek-Trojnar E, Drąg-Kozak E, Szczerbik P, Socha M, Popek W (2014) Effect of long-term dietary lead exposure on some maturation and reproductive parameters of a female Prussian carp (Carassius gibelio B.). Environ Sci Pollut Res 21:2465–2478. https://doi.org/10.1007/s11356-013-2184-x [DOI: 10.1007/s11356-013-2184-x]
  39. Maftuch M, Andayani S, Damayanti N, Indriyani W, Prihant AA, Amalia LW (2017) Rearing Milkfish (Chanos chanos) in cadmium and lead contaminated pond and its effect on alteration of gill, liver and kidney. Nat Environ Pollut Technol 16:911–916
  40. Maurya PK, Malika DS, Yadavb KK, Guptab N, Kumar S (2019) Haematological and histological changes in fish Heteropneustes fossilis exposed to pesticides from industrial waste water. Hum Ecol Risk Assess 25:1251–1278. https://doi.org/10.1080/10807039.2018.1482736 [DOI: 10.1080/10807039.2018.1482736]
  41. Meyer DJ, Harvey JW (2004) Veterinary laboratory medicine: interpretation and diagnosis. Saunders, Elsevier, Philadelphia, USA
  42. Najjiah M, Nadirah MH (2008) Quantitative comparisons of erythrocyte morphology in healthy freshwater fish species from Malaysia. Res J Fish Hydrobiol 3:32–35
  43. Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2013) Toxicity, feeding rate and growth rate response to sub-lethal concentrations of anthracene and benzo [a] pyrene in milkfish Chanos chanos (Forskkal). Bull Environ Contam Toxicol 90:60–68. https://doi.org/10.1007/s00128-012-0895-1 [DOI: 10.1007/s00128-012-0895-1]
  44. Palanikumar L, Kumaraguru AK, Ramakritinan CM, Anand M (2014) Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. Int J Environ Sci Technol 11:765–774. https://doi.org/10.1007/s13762-013-0264-6 [DOI: 10.1007/s13762-013-0264-6]
  45. Polizopoulou ZS (2010) Haematological test in sheep health management. Small Rumin Res 92:88–91. https://doi.org/10.1016/j.smallrumres.2010.04.015 [DOI: 10.1016/j.smallrumres.2010.04.015]
  46. Raina S, Sachar A (2014) Effect of heavy metal, Zinc and Carbamate pesticide, Sevin on haematological parameters of fish, Labeo boga. Int J Innov Res Sci Eng Technol 3:12636–12644
  47. Rajeshkumar S, Mini J, Munuswamy N (2013) Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol Environ Saf 98:8–18. https://doi.org/10.1016/j.ecoenv.2013.07.029 [DOI: 10.1016/j.ecoenv.2013.07.029]
  48. Saravanan M, Karthika S, Malarvizhi A, Ramesh M (2011) Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. J Hazard Mater 195:188–194. https://doi.org/10.1016/j.jhazmat.2011.08.029 [DOI: 10.1016/j.jhazmat.2011.08.029]
  49. Schmitt CJ, Caldwell CA, Olsen B, Serdar D, Coffey M (2002) Inhibition of erythrocyte δ-aminolevulinic acid dehydratase (ALAD) activity in fish from waters affected by lead smelters. Environ Monit Assess 77:99–119. https://doi.org/10.1023/A:1015767503629 [DOI: 10.1023/A]
  50. Sharma J, Langer S (2014) Effect of manganese on haematological parameters of fish, Garra gotyla gotyla. J Entomol Zool Stud 2:77–81
  51. Shen Y, Wang D, Zhao J, Chen X (2018) Fish red blood cells express immune genes and responses. Aquac Fish 3:14–21. https://doi.org/10.1016/j.aaf.2018.01.001 [DOI: 10.1016/j.aaf.2018.01.001]
  52. Soni R, Gaherwal SG (2018) Effect of herbicide 2, 4-D on hematological parameters of Clarias Batrachus. Int J Curr Res in Life Sci 7:2441–2444
  53. Stalin A, Suganthi P, Mathivani S, Paray BA, Al-Sadoon MK, Gokula V, Musthafa MS (2019) Impact of chlorpyrifos on behavior and histopathological indices in different tissues of freshwater fish Channa punctatus (Bloch). Environ Sci Pollut Res 26:17623–17631. https://doi.org/10.1007/s11356-019-05165-3 [DOI: 10.1007/s11356-019-05165-3]
  54. Stockham MA, Scott MA (2008) Fundamental of veterinary clinical pathology. Ed 2. Blackwell publishing. Iowa. 80–99.
  55. Sula E, Aliko V, Pagano M, Faggio C (2019) Digital light microscopy as a tool in toxicological evaluation of fish erythrocyte morphological abnormalities. Microsc Res Tech 83:362–369. https://doi.org/10.1002/jemt.23422 [DOI: 10.1002/jemt.23422]
  56. Takarina ND, Adiwibowo A, Sunardi WW, Pin TG (2012) Bioconcentration of lead (PB) in milkfish (Chanos Chanos Forsk) related to the water quality in aquaculture ponds of Marunda, North Jakarta, Indonesia. Int J Sci Res Pub 2:188–192
  57. Tariang KU, Ramanujam SN, Das B (2019) Effect of arsenic (As) and lead (Pb) on glycogen content and on the activities of selected enzymes involved in carbohydrate metabolism in freshwater catfish, Heteropneustes fossilis. Int Aquat Res 11:253–266. https://doi.org/10.1007/s40071-019-00234-2 [DOI: 10.1007/s40071-019-00234-2]
  58. Tomova E, Arnaudov A, Velcheva L (2008) Effects of zinc on morphology of erythrocytes and spleen in Carassius gibelio. J Environ Biol 29:897–902
  59. Wedemeyer GA, McLeay DJ (1981) Methods for determining the tolerance of fishes to environmental stressors. In Stress and Fish (Edited by Pickering AD.). Academic Press. London. 247–275.
  60. Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23:275–281. https://doi.org/10.1080/21658005.2013.846963 [DOI: 10.1080/21658005.2013.846963]
  61. Witeska M, Kondera E, Szczygielska K (2011) The effects of cadmium on common carp erythrocyte morphology. Pol J Environ Stud 20:783–788
  62. Zulfahmi I, Herjayanto M, Agung S, Batubara RA (2019) Palm kernel meal as a fish-feed ingredient for Milkfish (Chanos chanos, Forskall 1755): effect on growth and gut health. Pak J Nutr 18:753–760. https://doi.org/10.3923/pjn.2019.753.760 [DOI: 10.3923/pjn.2019.753.760]

Grants

  1. CARC/BIO/FST/GN.04/2019/Center for Aquatic Research and Conservation (CARC), Ar-Raniry State Islamic University

MeSH Term

Animals
Female
Fishes
Lead
Nitrates

Chemicals

Nitrates
Lead

Word Cloud

Created with Highcharts 10.0.0leadmilkfishgrowthparametersnitratehemoglobinmeancorpuscularhaematologicalexposuregainfeedsignificantlyconcentrationcellsGrowthChanoschanosdateeffectsstillwellunderstoodreasonpresentstudyseeksexplainconundrumSub-adultfemaleexposedfourconcentrations0 mg/l4264 mg/l6397 mg/l8529 mg/l40 daysResultsrevealedcausedsignificantchangesWeightlengthspecificrateefficiencyconversionratiodeclinedhighesttreatmentMoreoverdecreasedvalueredbloodhematocritalongmarkedincreasevolumeSeveralerythrocytemalformationsincludingswellingdeformationdoublingbinucleuslacerationmembranehemolyzationvacuolationobservedExposureLeadNitrateAltersHaematologicalParametersMilkfishBloodErythrocyticabnormalitiesperformanceHeavymetalsToxicity

Similar Articles

Cited By