A Bayesian parametric approach to handle missing longitudinal outcome data in trial-based health economic evaluations.

Andrea Gabrio, Michael J Daniels, Gianluca Baio
Author Information
  1. Andrea Gabrio: University College London, UK.
  2. Michael J Daniels: University of Florida, Gainesville, USA.
  3. Gianluca Baio: University College London, UK.

Abstract

Trial-based economic evaluations are typically performed on cross-sectional variables, derived from the responses for only the completers in the study, using methods that ignore the complexities of utility and cost data (e.g. skewness and spikes). We present an alternative and more efficient Bayesian parametric approach to handle missing longitudinal outcomes in economic evaluations, while accounting for the complexities of the data. We specify a flexible parametric model for the observed data and partially identify the distribution of the missing data with partial identifying restrictions and sensitivity parameters. We explore alternative non-ignorable missingness scenarios through different priors for the sensitivity parameters, calibrated on the observed data. Our approach is motivated by, and applied to, data from a trial assessing the cost-effectiveness of a new treatment for intellectual disability and challenging behaviour.

Keywords

References

  1. Value Health. 2015 Mar;18(2):161-72 [PMID: 25773551]
  2. Stat Med. 2019 Feb 10;38(3):480-496 [PMID: 30298525]
  3. Med Decis Making. 2005 Jul-Aug;25(4):416-23 [PMID: 16061893]
  4. J Am Stat Assoc. 2015 Mar;110(509):45-55 [PMID: 26236060]
  5. Pharmacoeconomics. 2000 May;17(5):479-500 [PMID: 10977389]
  6. Health Econ. 2001 Jun;10(4):303-15 [PMID: 11400253]
  7. Pharmacoeconomics. 2005;23(6):529-36 [PMID: 15960550]
  8. J Health Econ. 1999 Jun;18(3):341-64 [PMID: 10537899]
  9. Health Technol Assess. 2018 Mar;22(15):1-110 [PMID: 29596045]
  10. Stat Med. 2019 Apr 15;38(8):1399-1420 [PMID: 30565727]
  11. Health Econ. 2005 May;14(5):487-96 [PMID: 15497198]
  12. J R Stat Soc Ser A Stat Soc. 2009 Apr;172(2):383-404 [PMID: 19381329]
  13. Stat Methods Med Res. 2016 Oct;25(5):2036-2052 [PMID: 24346164]
  14. Pharmacoecon Open. 2017 Jun;1(2):79-97 [PMID: 29442336]
  15. Health Econ. 2012 Feb;21(2):187-200 [PMID: 22223561]
  16. Med Decis Making. 2012 Mar-Apr;32(2):350-61 [PMID: 22016450]
  17. Health Econ. 2018 Jun;27(6):1024-1040 [PMID: 29573044]
  18. Stat Med. 2014 May 20;33(11):1900-13 [PMID: 24343868]
  19. Health Econ. 2006 Jul;15(7):677-87 [PMID: 16491461]
  20. Health Econ. 1994 Sep-Oct;3(5):309-19 [PMID: 7827647]
  21. Med Decis Making. 1990 Jul-Sep;10(3):212-4 [PMID: 2115096]
  22. Biometrics. 2000 Dec;56(4):1241-8 [PMID: 11129486]
  23. Med Decis Making. 2012 Jan-Feb;32(1):56-69 [PMID: 22009667]
  24. Biometrics. 2011 Sep;67(3):810-8 [PMID: 21361893]
  25. Med Decis Making. 2007 Mar-Apr;27(2):101-11 [PMID: 17409361]
  26. Pharmacoeconomics. 2009;27(6):519-28 [PMID: 19640014]
  27. Stat Med. 2016 Nov 30;35(27):5029-5039 [PMID: 27426216]
  28. Health Econ. 2005 Dec;14(12):1217-29 [PMID: 15945043]
  29. Med Decis Making. 2003 Jan-Feb;23(1):38-53 [PMID: 12583454]
  30. Stat Sci. 2018 May;33(2):198-213 [PMID: 31889740]
  31. J Am Stat Assoc. 2016;111(516):1454-1465 [PMID: 29104333]
  32. Pharmacoeconomics. 2018 Aug;36(8):889-901 [PMID: 29679317]

Grants

  1. R01 CA183854/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0dataeconomicevaluationsBayesianparametricapproachmissingcomplexitiesalternativehandlelongitudinalobservedsensitivityparametersTrial-basedtypicallyperformedcross-sectionalvariablesderivedresponsescompletersstudyusingmethodsignoreutilitycostegskewnessspikespresentefficientoutcomesaccountingspecifyflexiblemodelpartiallyidentifydistributionpartialidentifyingrestrictionsexplorenon-ignorablemissingnessscenariosdifferentpriorscalibratedmotivatedappliedtrialassessingcost-effectivenessnewtreatmentintellectualdisabilitychallengingbehaviouroutcometrial-basedhealthstatisticsCost-effectivenessLongitudinalMissingSensitivityanalysis

Similar Articles

Cited By (6)