In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice.

Narayanappa Amruta, Elizabeth B Engler-Chiurazzi, Isabel C Murray-Brown, Timothy E Gressett, Ifechukwude J Biose, Wesley H Chastain, Jaime B Befeler, Gregory Bix
Author Information
  1. Narayanappa Amruta: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  2. Elizabeth B Engler-Chiurazzi: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  3. Isabel C Murray-Brown: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  4. Timothy E Gressett: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  5. Ifechukwude J Biose: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  6. Wesley H Chastain: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  7. Jaime B Befeler: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  8. Gregory Bix: Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA. Electronic address: gbix@tulane.edu.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin ��5��1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin ��5��1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin ��5 and ��v (an ��5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin ��5��1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.

Keywords

References

  1. Viruses. 2021 Jan 20;13(2): [PMID: 33498225]
  2. J Cereb Blood Flow Metab. 2020 Aug;40(8):1695-1708 [PMID: 31575337]
  3. Br J Cancer. 2006 Jun 5;94(11):1621-6 [PMID: 16705310]
  4. Signal Transduct Target Ther. 2020 Oct 15;5(1):240 [PMID: 33060566]
  5. Eur J Pharm Biopharm. 2014 Sep;88(1):8-27 [PMID: 24681294]
  6. Lancet Infect Dis. 2021 Aug;21(8):1070 [PMID: 34022142]
  7. PLoS Pathog. 2021 Jan 19;17(1):e1009195 [PMID: 33465158]
  8. JACC Basic Transl Sci. 2021 Jan;6(1):1-8 [PMID: 33102950]
  9. Microb Pathog. 2001 May;30(5):279-88 [PMID: 11373122]
  10. Cell Res. 2020 Apr;30(4):343-355 [PMID: 32231345]
  11. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  12. Cell. 2002 Feb 8;108(3):407-19 [PMID: 11853674]
  13. Trends Microbiol. 2007 Nov;15(11):500-7 [PMID: 17988871]
  14. Infect Genet Evol. 2020 Nov;85:104445 [PMID: 32615316]
  15. Euro Surveill. 2020 Jan;25(3): [PMID: 31992387]
  16. Viruses. 2021 Apr 09;13(4): [PMID: 33918599]
  17. Science. 2014 Sep 12;345(6202):1369-72 [PMID: 25214632]
  18. Sci Signal. 2021 Jan 12;14(665): [PMID: 33436497]
  19. Am J Respir Cell Mol Biol. 2021 Jan;64(1):79-88 [PMID: 32991819]
  20. Clin Cancer Res. 2008 Apr 1;14(7):2137-44 [PMID: 18381955]
  21. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  22. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003 Sep;17(3):217-21 [PMID: 15340561]
  23. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  24. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  25. J Virol. 2019 Feb 19;93(5): [PMID: 30541856]
  26. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  27. Phys Rep. 2021 May 23;913:1-52 [PMID: 33612922]
  28. Lancet. 2021 Jan 16;397(10270):220-232 [PMID: 33428867]
  29. Vet Microbiol. 2019 Jun;233:147-153 [PMID: 31176401]
  30. Perspect Medicin Chem. 2008 Apr 10;2:57-73 [PMID: 19787098]
  31. Ann Hepatol. 2018 Jun 4;17(4):547-560 [PMID: 29893696]
  32. iScience. 2022 Jan 21;25(1):103670 [PMID: 34957381]
  33. Sci Rep. 2021 Mar 30;11(1):7132 [PMID: 33785846]
  34. JAMA. 2020 Jun 23;323(24):2518-2520 [PMID: 32437497]
  35. Immunology. 2021 Jun;163(2):220-235 [PMID: 33512727]
  36. BMC Med. 2021 Feb 5;19(1):40 [PMID: 33541353]
  37. Lancet Infect Dis. 2021 Sep;21(9):e296-e301 [PMID: 33631099]
  38. Pharmaceutics. 2019 Mar 19;11(3): [PMID: 30893852]
  39. Front Bioeng Biotechnol. 2020 Dec 21;8:626882 [PMID: 33409272]
  40. J Clin Invest. 2017 Jan 3;127(1):365-374 [PMID: 27918306]
  41. Sci Signal. 2021 Jan 12;14(665): [PMID: 33436498]
  42. J Virol. 2004 Oct;78(20):10839-47 [PMID: 15452204]
  43. J Neuroimmunol. 2020 Jul 9;346:577318 [PMID: 32682140]
  44. Signal Transduct Target Ther. 2020 Jun 10;5(1):89 [PMID: 32533062]
  45. J Virol. 2006 Mar;80(6):2684-93 [PMID: 16501078]
  46. Lancet Respir Med. 2020 Jul;8(7):681-686 [PMID: 32473124]
  47. Antiviral Res. 2020 May;177:104759 [PMID: 32130973]
  48. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  49. Life Sci Alliance. 2021 Jun 28;4(8): [PMID: 34183442]
  50. Nature. 2020 Jul;583(7818):830-833 [PMID: 32380511]
  51. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15470-5 [PMID: 15494436]
  52. Nature. 2021 Jan;589(7843):603-607 [PMID: 33166988]
  53. JCI Insight. 2020 Oct 2;5(19): [PMID: 32841215]
  54. JACC Basic Transl Sci. 2020 Sep;5(9):871-883 [PMID: 32838074]
  55. Virology. 2008 Jan 20;370(2):430-42 [PMID: 17945327]
  56. Front Pharmacol. 2020 Jun 12;11:912 [PMID: 32595513]
  57. J Clin Med. 2021 Feb 09;10(4): [PMID: 33572429]
  58. Transl Stroke Res. 2021 Feb;12(1):1-14 [PMID: 32862401]
  59. Mult Scler Relat Disord. 2020 Sep;44:102250 [PMID: 32531754]
  60. Cytokine Growth Factor Rev. 2020 Aug;54:24-31 [PMID: 32536564]
  61. J Med Virol. 2020 Oct;92(10):1741-1742 [PMID: 32246503]
  62. Transl Res. 2020 Jun;220:1-13 [PMID: 32299776]
  63. Mol Cancer Ther. 2006 Sep;5(9):2271-80 [PMID: 16985061]
  64. PLoS One. 2012;7(4):e34747 [PMID: 22523556]
  65. J Thorac Oncol. 2020 May;15(5):700-704 [PMID: 32114094]
  66. Bull Math Biol. 2020 Apr 8;82(4):52 [PMID: 32270376]
  67. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  68. Angiogenesis. 2014 Jul;17(3):499-509 [PMID: 24668225]
  69. Clin Transl Immunology. 2021 Mar 18;10(3):e1240 [PMID: 33747508]
  70. Arch Virol. 2015 Nov;160(11):2669-81 [PMID: 26321473]
  71. Nature. 2020 May;581(7807):215-220 [PMID: 32225176]
  72. Life Sci. 2021 Aug 1;278:119640 [PMID: 34048812]
  73. Radiology. 2020 Jun;295(3):715-721 [PMID: 32053470]
  74. Nat Immunol. 2020 Nov;21(11):1327-1335 [PMID: 32839612]

Grants

  1. K01 MH117343/NIMH NIH HHS

MeSH Term

Alanine Transaminase
Angiotensin-Converting Enzyme 2
Animals
Aspartate Aminotransferases
COVID-19
Genome, Viral
Humans
Integrins
Liver
Lung
Male
Mice, Inbred C57BL
Mice, Transgenic
Oligopeptides
SARS-CoV-2
Staining and Labeling
Viral Load
COVID-19 Drug Treatment
Mice

Chemicals

Integrins
Oligopeptides
Aspartate Aminotransferases
Alanine Transaminase
ACE2 protein, human
Angiotensin-Converting Enzyme 2
acetyl-prolyl-histidyl-seryl-cysteinyl-asparaginamide

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2ATN-161infectionintegrinpotentialinteractions��5��1viralmicelungefficacyfacilitatepreviouslyspikeproteinvitrotherapeutick18-hACE2transgenicvivoCxcl10Severeacuterespiratorysyndromecoronavirus2infectiousdiseasespreadworldwideCurrenttreatmentslimitedavailabilityimprovingunderstandingfactorsurgentlyneededeffectivelytreatinfectedindividualscurbpandemicothersdemonstratedsignificancehumanACE2entryhostcellsfoundinhibitionclinicallyvalidatedsmallpeptideinhibitscellcontinuationpreviousfindingsevaluatedsusceptiblediscoveredtreatmentsinglerepeatedintravenousdoses1 mg/kgwithin48 hintranasalinoculationleadreductionloadimmunofluorescenceimprovedhistologymajority72 hpost-infectionFurthermorereducedSARS-CoV-2-inducedincreasedexpression��5��v��5-relatedalsoimplicatedwellC-X-Cmotifchemokineligand10supportinginvolvementintegrinsanti-inflammatoryrespectivelybestknowledgefirststudydemonstratingtargetingsupportsdevelopmentnoveltherapyVivoprotectionIntegrinshACE2

Similar Articles

Cited By