Single-electron spin resonance in a nanoelectronic device using a global field.

Ensar Vahapoglu, James P Slack-Smith, Ross C C Leon, Wee Han Lim, Fay E Hudson, Tom Day, Tuomo Tanttu, Chih Hwan Yang, Arne Laucht, Andrew S Dzurak, Jarryd J Pla
Author Information
  1. Ensar Vahapoglu: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. e.vahapoglu@unsw.edu.au j.slack-smith@unsw.edu.au a.dzurak@unsw.edu.au jarryd@unsw.edu.au. ORCID
  2. James P Slack-Smith: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. e.vahapoglu@unsw.edu.au j.slack-smith@unsw.edu.au a.dzurak@unsw.edu.au jarryd@unsw.edu.au. ORCID
  3. Ross C C Leon: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ORCID
  4. Wee Han Lim: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
  5. Fay E Hudson: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ORCID
  6. Tom Day: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ORCID
  7. Tuomo Tanttu: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
  8. Chih Hwan Yang: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ORCID
  9. Arne Laucht: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. ORCID
  10. Andrew S Dzurak: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. e.vahapoglu@unsw.edu.au j.slack-smith@unsw.edu.au a.dzurak@unsw.edu.au jarryd@unsw.edu.au. ORCID
  11. Jarryd J Pla: School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia. e.vahapoglu@unsw.edu.au j.slack-smith@unsw.edu.au a.dzurak@unsw.edu.au jarryd@unsw.edu.au.

Abstract

Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit devices to silicon quantum processors with upward of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here, we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nanoelectronic circuit. Critically, this technique uses only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.

References

  1. Phys Rev B. 2017 Feb;95(7): [PMID: 29354794]
  2. Sci Adv. 2017 Feb 01;3(2):e1601540 [PMID: 28164154]
  3. Nat Commun. 2019 Dec 3;10(1):5500 [PMID: 31796728]
  4. Nature. 2018 Mar 29;555(7698):633-637 [PMID: 29443962]
  5. Nature. 2020 Apr;580(7803):350-354 [PMID: 32296190]
  6. Sci Adv. 2015 Oct 30;1(9):e1500707 [PMID: 26601310]
  7. Sci Adv. 2015 Apr 10;1(3):e1500022 [PMID: 26601166]
  8. Phys Rev B Condens Matter. 1994 Jul 15;50(3):2019-2022 [PMID: 9976406]
  9. Nature. 2020 Apr;580(7803):355-359 [PMID: 32296188]
  10. Nanotechnology. 2013 Jan 11;24(1):015202 [PMID: 23221273]
  11. Sci Adv. 2016 Aug 12;2(8):e1600694 [PMID: 27536725]
  12. Nat Commun. 2017 Dec 15;8(1):1766 [PMID: 29242497]
  13. Rev Sci Instrum. 2015 Feb;86(2):023108 [PMID: 25725824]
  14. Nat Nanotechnol. 2014 Sep;9(9):666-70 [PMID: 25108810]
  15. Nat Nanotechnol. 2014 Dec;9(12):981-5 [PMID: 25305743]
  16. Nat Commun. 2020 Feb 11;11(1):797 [PMID: 32047151]
  17. Nature. 2019 May;569(7757):532-536 [PMID: 31086337]
  18. J Magn Reson. 2005 Jun;174(2):292-300 [PMID: 15862247]
  19. Sci Adv. 2018 Jul 06;4(7):eaar3960 [PMID: 29984303]
  20. Nature. 2015 Oct 15;526(7573):410-4 [PMID: 26436453]

Word Cloud

Created with Highcharts 10.0.0quantumsiliconmicrowavecontrolglobalspinscalabledevicesqubitssignalsqubitusingnanoelectronicsinglefieldresonancedeviceSpin-basedelectroniccircuitsofferplatformcomputationcombiningmanufacturabilitysemiconductorlongcoherencetimesaffordedspinsAdvancingcurrentfew-qubitprocessorsupwardmillionrequiredfault-tolerantoperationpresentsseveraluniquechallengesonedemandingabilitydeliverlarge-scaledemonstratepotentialsolutionproblemthree-dimensionaldielectricresonatorbroadcastsignalacrosscircuitCriticallytechniqueusessourcecapabledeliveringmillionssimultaneouslyshowcanusedperformelectronsconfineddoubledotestablishingfeasibilityapproachSingle-electron

Similar Articles

Cited By