Can Rubber Crop Systems Recover Termite Diversity in Previously Degraded Pastures in the Colombian Amazon Region?

Daniel Castro, Tiago F Carrijo, Francisco J Serna, Clara P Peña-Venegas
Author Information
  1. Daniel Castro: Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, D.C, Colombia. jocastrot@unal.edu.co. ORCID
  2. Tiago F Carrijo: Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil.
  3. Francisco J Serna: Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
  4. Clara P Peña-Venegas: Instituto Amazónico de Investigaciones Científicas SINCHI, Leticia, Amazonas, Colombia.

Abstract

Livestock production extension in Amazon has caused deforestation and soil degradation, with negative consequences on diversity and environmental services. Recently, rubber crops have been established in deteriorated soils of the Colombian Amazon as an option to restore hectares of unproductive degraded pastures. Bioindicator insects, such as termites, have been used to assess soil quality and fertility restoration. This study evaluated differences in termite abundance, species richness, and community composition in three different rubber crop systems as an indirect way of evaluating soil diversity restoring. Three rubber crop systems were sampled: clonal fields (rubber monocultures with different rubber clones), traditional commercial rubber plantations (rubber monocultures with just one rubber clone), and mixed plantations (rubber fields intercropped with copoazú fruit trees). Additionally, pastures in use for livestock production and natural forest relicts were compared to rubber crop systems, to serve as reference habitats. Termites were sampled using a 105-m transect method. Alpha diversity and beta diversity were estimated and compared between rubber crops and reference habitats. A total of 80 termite species belonging to two families were collected. Mixed plantations and pastures presented the lowest diversity rates. Species richness in rubber crop systems was 39% higher than that in pastures and included 72% of the termite species found in natural forests. Indicator species analysis associated soil-feeding termites with less diverse habitats and wood-feeding termites with high diverse habitats. Our results demonstrate that termite recovery will depend on the farming system selected and the agricultural practices implemented in the field, with some rubber crop systems, like commercial rubber plantations and clonal fields, recovering termite diversity better than others, such as mixed plantations.

Keywords

References

  1. Ackerman IL, Constantino R, Gauch HG et al (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in central Amazonia. Biotropica 41:226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.x [DOI: 10.1111/j.1744-7429.2008.00479.x]
  2. Attignon SE, Lachat T, Sinsin B et al (2005) Termite assemblages in a West-African semi-deciduous forest and teak plantations. Agric Ecosyst Environ 110:318–326. https://doi.org/10.1016/j.agee.2005.04.020 [DOI: 10.1016/j.agee.2005.04.020]
  3. Bandeira AG, Vasconcellos A, Silva MP, Constantino R (2003) Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga Domain, Brazil. Sociobiology 42:1–11
  4. Barros E, Grimaldi M, Sarrazin M et al (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Appl Soil Ecol 26:157–168. https://doi.org/10.1016/j.apsoil.2003.10.012 [DOI: 10.1016/j.apsoil.2003.10.012]
  5. Barros E, Mathieu J, Tapia-Coral S, et al (2006) Soil macrofauna communities in Brazilian Amazonia. In: Moreira F, Siqueira J, Brussaard L (eds) Soil Biodiversity in Amazonian and other Brazilian Ecosystems. CABI Publishing, Wallingford, UK, pp 43–55
  6. Barros E, Pashanasi B, Constantino R, Lavelle P (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biol Fertil Soils 35:338–347. https://doi.org/10.1007/s00374-002-0479-z [DOI: 10.1007/s00374-002-0479-z]
  7. Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110:11039–11043. https://doi.org/10.1073/pnas.1305618110 [DOI: 10.1073/pnas.1305618110]
  8. Bellamy AS, Svensson O, van den Brink PJ et al (2018) Insect community composition and functional roles along a tropical agricultural production gradient. Environ Sci Pollut Res 25:13426–13438. https://doi.org/10.1007/s11356-018-1818-4 [DOI: 10.1007/s11356-018-1818-4]
  9. Beltrán-Díaz MA, Pinzón-Florián OP (2018) Termites (Isoptera: Termitidae, rhinotermitidae) in Pinus caribaea plantations in the Colombian orinoco basin. Rev Colomb Entomol 44:61–71. https://doi.org/10.25100/socolen.v44i1.6544
  10. Benito NP, Brossard M, Pasini A et al (2004) Transformations of soil macroinvertebrate populations after native vegetation conversion to pasture cultivation (Brazilian Cerrado). Eur J Soil Biol 40:147–154. https://doi.org/10.1016/j.ejsobi.2005.02.002 [DOI: 10.1016/j.ejsobi.2005.02.002]
  11. Bignell DE (2005) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Soil Biology, vol 6. Springer. Berlin, Heidelberg, pp 183–220 [DOI: 10.1007/3-540-28185-1_8]
  12. Bourguignon T, Leponce M, Roisin Y (2011) Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43:473–479. https://doi.org/10.1111/j.1744-7429.2010.00729.x [DOI: 10.1111/j.1744-7429.2010.00729.x]
  13. Bourguignon T, Scheffrahn RH, Krecek J et al (2010) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebr Syst 24:357–370. https://doi.org/10.1111/zoj.12305 [DOI: 10.1111/zoj.12305]
  14. Bourguignon T, Sobotnik J, Dahlsjo CAL, Roisin Y (2016) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insectes Soc 63:39–50. https://doi.org/10.1007/s00040-015-0446-y [DOI: 10.1007/s00040-015-0446-y]
  15. Cancello EM, Cuezzo C (2007) A new species of Ereymatermes Constantino (Isoptera, Termitidae, Nasutitermitinae) from the northeastern Atlantic Forest, Brazil. Pap Avulsos Zool 47:283–288. https://doi.org/10.1590/S0031-10492007002300001 [DOI: 10.1590/S0031-10492007002300001]
  16. Carrijo TF, Brandão D, Oliveira DE et al (2009) Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). J Insect Conserv 13:575–581. https://doi.org/10.1007/s10841-008-9205-y [DOI: 10.1007/s10841-008-9205-y]
  17. Carrijo TF, Pontes-Nogueira M, Santos RG et al (2020) New World Heterotermes (Isoptera, Rhinotermitidae): molecular phylogeny, biogeography and description of a new species. Syst Entomol 45:527–539. https://doi.org/10.1111/syen.12412 [DOI: 10.1111/syen.12412]
  18. Casalla R, Korb J (2019) Termite diversity in Neotropical dry forests of Colombia and the potential role of rainfall in structuring termite diversity. Biotropica 2019:1–13. https://doi.org/10.1111/btp.12626 [DOI: 10.1111/btp.12626]
  19. Castro D, Constantini JP, Scheffrahn RH et al (2020) Rustitermes boteroi, a new genus and species of soldierless termites (Blattodea, Isoptera, Apicotermitinae) from South America. Zookeys 922:35–49. https://doi.org/10.3897/zookeys.922.47347 [DOI: 10.3897/zookeys.922.47347]
  20. Castro D, Scheffrahn RH (2019) A new species of Acorhinotermes Emerson, 1949 ( Blattodea, Isoptera, Rhinotermitidae ) from Colombia, with a key to Neotropical Rhinotermitinae species based on minor soldiers. Zookeys 891:61–70. https://doi.org/10.3897/zookeys.891.37523 [DOI: 10.3897/zookeys.891.37523]
  21. Chao A, Gotelli NJ, Hsieh TC et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67 [DOI: 10.1890/13-0133.1]
  22. Cherubin MR, Chavarro-Bermeo JP, Silva-Olaya AM (2019) Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agrofor Syst 93:1741–1753. https://doi.org/10.1007/s10457-018-0282-y [DOI: 10.1007/s10457-018-0282-y]
  23. Constantini JP, Cancello EM (2016) A taxonomic revision of the Neotropical termite genus Rhynchotermes (Isoptera, Termitidae, Syntermitinae). Zootaxa 4109:501. https://doi.org/10.11646/zootaxa.4109.5.1 [DOI: 10.11646/zootaxa.4109.5.1]
  24. Constantino R (1991) Termites (Isoptera) from the lower Japurá River, Amazonas State, Brazil. Bol Do Mus Para Emílio Goeldi, Série Zool 7:189–224
  25. Constantino R (1995) Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). Univ Kansas Sci Bull 55:455–518
  26. Constantino R (2002a) An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 67:1–40 [DOI: 10.11646/zootaxa.67.1.1]
  27. Constantino R (2002b) The pest termites of South America: taxonomy, distribution and status. J Appl Entomol 126:355–365 [DOI: 10.1046/j.1439-0418.2002.00670.x]
  28. Constantino R (1998) Description of a New Planicapritermes from Central Amazonia, with notes on the morphology of the digestive tube of the Neocapritermes-Planicapritermes Group (Isoptera: Termitidae: Termitinae). Sociobiology 32:109–118
  29. Constantino R (2000) Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Syst Evol 31:463–472 [DOI: 10.1163/187631200X00499]
  30. Constantino R (1992) Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24:420–430. https://doi.org/10.1017/CBO9781107415324.004 [DOI: 10.1017/CBO9781107415324.004]
  31. Constantino R, Acioli ANS, Schmidt K et al (2006) A taxonomic revision of the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa 1340:1–44 [DOI: 10.11646/zootaxa.1340.1.1]
  32. Constantino R, De Souza OFF (1997) Key to the soldiers of Atlantitermes Fontes 1979, with a new species from Brazil (Isoptera Termitidae Nasutitermitinae). Trop Zool 10:205–213 [DOI: 10.1080/03946975.1997.10539337]
  33. Coulibaly T, Akpesse AAM, Boga JP et al (2016) Change in termite communities along a chronosequence of mango tree orchards in the north of Côte d’Ivoire. J Insect Conserv 20:1011–1019. https://doi.org/10.1007/s10841-016-9935-1 [DOI: 10.1007/s10841-016-9935-1]
  34. Davies RG, Hernández LM, Eggleton P et al (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J Trop Ecol 19:509–524. https://doi.org/10.1017/S0266467403003560 [DOI: 10.1017/S0266467403003560]
  35. De Cáceres M, Jansen F, Dell N (2020) Package “indicspecies” type package title relationship between species and groups of sites. Package Version 1(7):9
  36. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. https://doi.org/10.1890/08-1823.1 [DOI: 10.1890/08-1823.1]
  37. De Cáceres M, Legendre P, Wiser SK, Brotons L (2012) Using species combinations in indicator value analyses. Methods Ecol Evol 3:973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.x [DOI: 10.1111/j.2041-210X.2012.00246.x]
  38. de Paula RC, de Moraes Lima Silveira R, da Rocha MM, Izzo TJ (2016) The restoration of termite diversity in different reforestated forests. Agrofor Syst 90:395–404. https://doi.org/10.1007/s10457-015-9862-2 [DOI: 10.1007/s10457-015-9862-2]
  39. De Souza OFF, Brown VK (1994) Effects of habitat fagmentation on amazonian termite communities effects of habitat fragmentation on Amazonian termite communities. J Trop Ecol 10:197–206 [DOI: 10.1017/S0266467400007847]
  40. De Souza ST, Cassol P, Baretta D et al (2016) Abundance and divedsity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Rev Bras Cienc Do Solo 40:e0150248. https://doi.org/10.1590/18069657rbcs20150248 [DOI: 10.1590/18069657rbcs20150248]
  41. Decaëns T, Jiménez JJ, Barros E et al (2004) Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agric Ecosyst Environ 103:301–312. https://doi.org/10.1016/J.AGEE.2003.12.005 [DOI: 10.1016/J.AGEE.2003.12.005]
  42. Decaëns T, Mariani L, Lavelle P (1999) Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia. Appl Soil Ecol 13:87–100. https://doi.org/10.1016/S0929-1393(99)00024-4 [DOI: 10.1016/S0929-1393(99)00024-4]
  43. Duran-Bautista EH, Armbrecht I, Acioli ANS et al (2020a) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecol Indic 117:106550. https://doi.org/10.1016/j.ecolind.2020.106550 [DOI: 10.1016/j.ecolind.2020.106550]
  44. Duran-Bautista EH, Muñoz Y, Galindo JD et al (2020) Soil physical quality and relationship to changes in termite community in northwestern Colombian Amazon. Front Ecol Evol 8:598134. https://doi.org/10.3389/fevo.2020.598134 [DOI: 10.3389/fevo.2020.598134]
  45. Eggleton P, Bignell DE, Sands WA et al (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Fores Reserve, southern Cameroon. PhilTransRSocLondB 351:51–68
  46. Eggleton P, Hauser S, Norgrove L et al (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202. https://doi.org/10.1016/S0167-8809(01)00206-7 [DOI: 10.1016/S0167-8809(01)00206-7]
  47. Eggleton P, Homathevi R, Jeeva D et al (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3:119–128
  48. Emerson AE (1925) The termites of Kartabo, Bartica District, British Guiana. Zool Sci Contrib New York Zool Soc 6:291–459 [DOI: 10.5962/p.190324]
  49. Ghosal A, Hati A (2019) Impact of some new generation insecticides on soil arthropods in rice maize cropping system. J Basic Appl Zool 80:1–8. https://doi.org/10.1186/s41936-019-0077-3 [DOI: 10.1186/s41936-019-0077-3]
  50. Griffiths HM, Ashton LA, Evans TA et al (2019) Termites can decompose more than half of deadwood in tropical rainforest. Curr Biol 29:R118–R119. https://doi.org/10.1016/j.cub.2019.01.012 [DOI: 10.1016/j.cub.2019.01.012]
  51. Hidayat MR, Endris WM, Dwiyanti Y (2018) Effect of a rubber plantation on termite diversity in Melawi, West Kalimantan, Indonesia. Agric Nat Resour 52:439–444. https://doi.org/10.1016/j.anres.2018.10.016 [DOI: 10.1016/j.anres.2018.10.016]
  52. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613 [DOI: 10.1111/2041-210X.12613]
  53. Husson F, Josse J, Le S, Maintainer JM (2020) Package “FactoMineR” title multivariate exploratory data analysis and data mining. Version 2:3
  54. ICONTEC (2016) NTC 5350. Calidad de suelo. Determinacion de fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá D.C.
  55. Jones DT, Eggleton P (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203 [DOI: 10.1046/j.1365-2664.2000.00464.x]
  56. Jones DT, Susilo FX, Bignell DE et al (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391 [DOI: 10.1046/j.1365-2664.2003.00794.x]
  57. Junqueira LK, Diehl E, Filho EB (2009) Termite (isoptera) diversity in eucalyptus-growth areas and in forest fragments. Sociobiology 53:805–828
  58. Krishna K (2003) A new species, Cavitermes rozeni (Isoptera: Termitidae: Termitinae), from Brazil. J Kansas Entomol Soc 76:92–95. https://doi.org/10.2307/25086093 [DOI: 10.2307/25086093]
  59. Krishna K, Araujo RL (1968) A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bull Am Museum Nat Hist 138:83–130
  60. Lamarre GPA, Erault BH, Fine PVA et al (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. J Anim Ecol 85:227–239. https://doi.org/10.1111/1365-2656.12445 [DOI: 10.1111/1365-2656.12445]
  61. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132. https://doi.org/10.1016/S0065-2504(08)60007-0 [DOI: 10.1016/S0065-2504(08)60007-0]
  62. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01 [DOI: 10.18637/jss.v025.i01]
  63. Lima SS, Pereira MG, Pereira RN et al (2018) Termite mounds effects on soil properties in the atlantic forest biome. Rev Bras Cienc Do Solo 42:e0160564. https://doi.org/10.1590/18069657rbcs20160564 [DOI: 10.1590/18069657rbcs20160564]
  64. Liu S, Lin X, Behm JE et al (2019) Comparative responses of termite functional and taxonomic diversity to land-use change. Ecol Entomol 44:762–770. https://doi.org/10.1111/een.12755 [DOI: 10.1111/een.12755]
  65. Luke SH, Fayle TM, Eggleton P et al (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers Conserv 23:2817–2832. https://doi.org/10.1007/s10531-014-0750-2 [DOI: 10.1007/s10531-014-0750-2]
  66. Marichal R, Grimaldi M, Feijoo MA et al (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl Soil Ecol 83:177–185. https://doi.org/10.1016/j.apsoil.2014.05.006 [DOI: 10.1016/j.apsoil.2014.05.006]
  67. Mathews AGA (1977) Studies on termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro
  68. Mathieu J, Rossi J-P, Mora P et al (2005) Recovery of soil macrofauna communities after forest clearance in Eastern Amazonia, Brazil. Conserv Biol 19:1598–1605. https://doi.org/10.1111/j.1523-1739.2005.00200.x [DOI: 10.1111/j.1523-1739.2005.00200.x]
  69. Neoh KB, Nguyen MT, Nguyen VT et al (2018) Intermediate disturbance promotes termite functional diversity in intensively managed Vietnamese coffee agroecosystems. J Insect Conserv 22:197–208. https://doi.org/10.1007/s10841-018-0053-0 [DOI: 10.1007/s10841-018-0053-0]
  70. Oksanen J, Blanchet FG, Friendly M, et al (2019) Package “vegan” Title Community Ecology Package Version 2.5–6
  71. Pinzón OP, Baquero LS, Beltran MA (2017) Termite (isoptera) diversity in a gallery forest relict in the Colombian eastern plains. Sociobiology 64:92–100. https://doi.org/10.13102/sociobiology.v64i1.1184 [DOI: 10.13102/sociobiology.v64i1.1184]
  72. Pinzón OP, Hernández AM, Malagón LA (2012) Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Rev Colomb Entomol 38:291–298
  73. Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541. https://doi.org/10.5194/bg-7-1515-2010 [DOI: 10.5194/bg-7-1515-2010]
  74. R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Australia. URL  https://www.R-project.org/
  75. Ramírez U, Charry A, Jäger M, et al (2018) Estrategia Sectorial de la Cadena de Caucho en Caquetá, con Enfoque Agroambiental y Cero Deforestación. Publicación CIAT No. 451. Centro Internacional de Agricultura Tropical (CIAT), Cali
  76. Da RMM, Cancello EM (2009) Revision of the Neotropical termite genus Orthognathotermes Holmgren ( Isoptera : Termitidae : Termitinae ). Zootaxa 2280:1–26 [DOI: 10.11646/zootaxa.2280.1.1]
  77. Da RMM, Cancello EM (2007) Estudo taxonômico de Cylindrotermes Holmegren (Isoptera, Termitidae Termitinae). Papéis Avulsos Zool Da Univ São Paulo 47:137–152 [DOI: 10.1590/S0031-10492007001000001]
  78. Rocha MM, Cancello EM, Carrijo TF (2012) Neotropical termites: revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of the Syntermitinae. Syst Entomol 37:793–827. https://doi.org/10.1111/j.1365-3113.2012.00645.x [DOI: 10.1111/j.1365-3113.2012.00645.x]
  79. Roisin Y, Dejean A, Corbara B et al (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149:301–311. https://doi.org/10.1007/s00442-006-0449-5 [DOI: 10.1007/s00442-006-0449-5]
  80. Rossi JP, Mathieu J, Cooper M, Grimaldi M (2006) Soil macrofaunal biodiversity in Amazonian pastures: matching sampling with patterns. Soil Biol Biochem 38:2178–2187. https://doi.org/10.1016/j.soilbio.2006.01.020 [DOI: 10.1016/j.soilbio.2006.01.020]
  81. Sanabria C, Dubs F, Lavelle P et al (2016) Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. Eur J Soil Biol 74:81–92. https://doi.org/10.1016/j.ejsobi.2016.03.008 [DOI: 10.1016/j.ejsobi.2016.03.008]
  82. Scheffrahn RH (2013) Compositermes vindai (Isoptera: Termitidae: Apicotermitinae), a new genus and species of soldierless termite from the Neotropics. Zootaxa 3652:381–391. https://doi.org/10.11646/zootaxa.3652.3.6 [DOI: 10.11646/zootaxa.3652.3.6]
  83. Scheffrahn RH, Carrijo TF, Postle AC, Tonini F (2017) Disjunctitermes insularis, a new soldierless termite genus and species (Isoptera, Termitidae, Apicotermitinae) from Guadeloupe and Peru. Zookeys 665:71–84. https://doi.org/10.3897/zookeys.665.11599 [DOI: 10.3897/zookeys.665.11599]
  84. Siebers N, Martius C, Eckhardt KU et al (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS ONE 10:e0123790. https://doi.org/10.1371/journal.pone.0123790 [DOI: 10.1371/journal.pone.0123790]
  85. Sterling A, Rodríguez CH (2012) Ampliación de la base genética de caucho natural con proyección para la Amazonia colombiana : fase de evaluación en periodo improductivo a gran escala. Instituto Amazónico de Investigaciones Científicas- Sinchi, Bogotá D.C.
  86. Ulyshen MD, Shefferson R, Horn S, et al (2017) Below- and above-ground effects of deadwood and termites in plantation forests. Ecosphere 8:1–17. https://doi.org/10.1002/ecs2.1910
  87. Viana AB, Souza VB, Reis YT, Marques-Costa AP (2014) Termite assemblages in dry tropical forests of Northeastern Brazil: Are termites bioindicators of environmental disturbances? Sociobiology 61:324–331. https://doi.org/10.13102/sociobiology.v61i3.324-331 [DOI: 10.13102/sociobiology.v61i3.324-331]
  88. Walkley A, Black IA (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003 [DOI: 10.1097/00010694-193401000-00003]
  89. Zaller JG, Brühl CA (2019) Non-target effects of pesticides on organisms inhabiting agroecosystems. Front Environ Sci 7:75. https://doi.org/10.3389/fenvs.2019.00075 [DOI: 10.3389/fenvs.2019.00075]

MeSH Term

Animals
Colombia
Forests
Isoptera
Rubber
Soil
Trees

Chemicals

Soil
Rubber

Word Cloud

Created with Highcharts 10.0.0rubberdiversitytermitespeciescropsystemsplantationspastureshabitatsAmazonsoiltermitesfieldsproductioncropsColombianrichnessdifferentclonalmonoculturescommercialmixednaturalcomparedreferenceIndicatordiverseLivestockextensioncauseddeforestationdegradationnegativeconsequencesenvironmentalservicesRecentlyestablisheddeterioratedsoilsoptionrestorehectaresunproductivedegradedBioindicatorinsectsusedassessqualityfertilityrestorationstudyevaluateddifferencesabundancecommunitycompositionthreeindirectwayevaluatingrestoringThreesampled:clonestraditionaljustonecloneintercroppedcopoazúfruittreesAdditionallyuselivestockforestrelictsserveTermitessampledusing105-mtransectmethodAlphabetaestimatedtotal80belongingtwofamiliescollectedMixedpresentedlowestratesSpecies39%higherincluded72%foundforestsanalysisassociatedsoil-feedinglesswood-feedinghighresultsdemonstraterecoverywilldependfarmingsystemselectedagriculturalpracticesimplementedfieldlikerecoveringbetterothersCanRubberCropSystemsRecoverTermiteDiversityPreviouslyDegradedPasturesRegion?ApicotermitinaeLandusesOrganiccarbonRarefactioncurves

Similar Articles

Cited By