Urinary metabolomic changes and microbiotic alterations in presenilin1/2 conditional double knockout mice.

Jie Gao, Nian Zhou, Yongkang Wu, Mengna Lu, Qixue Wang, Chenyi Xia, Mingmei Zhou, Ying Xu
Author Information
  1. Jie Gao: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
  2. Nian Zhou: Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
  3. Yongkang Wu: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
  4. Mengna Lu: Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
  5. Qixue Wang: Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China.
  6. Chenyi Xia: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
  7. Mingmei Zhou: Center for Chinese Medicine Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203, China. zhoumm368@163.com. ORCID
  8. Ying Xu: Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China. yingxu612@shutcm.edu.cn. ORCID

Abstract

BACKGROUND: Given the clinical low efficient treatment based on mono-brain-target design in Alzheimer's disease (AD) and an increasing emphasis on microbiome-gut-brain axis which was considered as a crucial pathway to affect the progress of AD along with metabolic changes, integrative metabolomic signatures and microbiotic community profilings were applied on the early age (2-month) and mature age (6-month) of presenilin1/2 conditional double knockout (PS cDKO) mice which exhibit a series of AD-like phenotypes, comparing with gender and age-matched C57BL/6 wild-type (WT) mice to clarify the relationship between microbiota and metabolomic changes during the disease progression of AD.
MATERIALS AND METHODS: Urinary and fecal samples from PS cDKO mice and gender-matched C57BL/6 wild-type (WT) mice both at age of 2 and 6 months were collected. Urinary metabolomic signatures were measured by the gas chromatography-time-of-flight mass spectrometer, as well as 16S rRNA sequence analysis was performed to analyse the microbiota composition at both ages. Furthermore, combining microbiotic functional prediction and Spearman's correlation coefficient analysis to explore the relationship between differential urinary metabolites and gut microbiota.
RESULTS: In addition to memory impairment, PS cDKO mice displayed metabolic and microbiotic changes at both of early and mature ages. By longitudinal study, xylitol and glycine were reduced at both ages. The disturbed metabolic pathways were involved in glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions, starch and sucrose metabolism, and citrate cycle, which were consistent with functional metabolic pathway predicted by the gut microbiome, including energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. Besides reduced richness and evenness in gut microbiome, PS cDKO mice displayed increases in Lactobacillus, while decreases in norank_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, Mucispirillum, and Odoribacter. Those altered microbiota were exceedingly associated with the levels of differential metabolites.
CONCLUSIONS: The urinary metabolomics of AD may be partially mediated by the gut microbiota. The integrated analysis between gut microbes and host metabolism may provide a reference for the pathogenesis of AD.

Keywords

References

  1. Trends Pharmacol Sci. 2016 Sep;37(9):750-767 [PMID: 27338838]
  2. Front Cell Infect Microbiol. 2019 Jun 26;9:221 [PMID: 31297340]
  3. Synapse. 2012 Oct;66(10):870-9 [PMID: 22715045]
  4. Front Neurol. 2018 Jan 12;8:719 [PMID: 29375465]
  5. J Neurosci Res. 2008 May 15;86(7):1615-25 [PMID: 18189321]
  6. Nat Genet. 2019 Mar;51(3):414-430 [PMID: 30820047]
  7. Neuron. 2010 Jan 28;65(2):165-77 [PMID: 20152124]
  8. FASEB J. 2018 Feb;32(2):654-668 [PMID: 28970251]
  9. Neuropharmacology. 2014 Feb;77:68-80 [PMID: 24055495]
  10. Cell Res. 2019 Oct;29(10):787-803 [PMID: 31488882]
  11. Sci Rep. 2017 Oct 19;7(1):13537 [PMID: 29051531]
  12. J Transl Med. 2019 Jul 15;17(1):224 [PMID: 31307473]
  13. Brain Res Bull. 2013 Aug;97:104-11 [PMID: 23792007]
  14. Expert Rev Neurother. 2018 Jan;18(1):83-90 [PMID: 29095058]
  15. BMC Microbiol. 2019 Jun 13;19(1):130 [PMID: 31195972]
  16. Saudi J Biol Sci. 2019 Feb;26(2):395-401 [PMID: 31485184]
  17. Mol Brain. 2019 Mar 28;12(1):26 [PMID: 30922367]
  18. Molecules. 2018 Oct 31;23(11): [PMID: 30384480]
  19. Brain Behav Immun. 2019 Nov;82:45-62 [PMID: 31376499]
  20. Neuron. 2004 Apr 8;42(1):23-36 [PMID: 15066262]
  21. Int J Mol Sci. 2013 Sep 06;14(9):18457-69 [PMID: 24018889]
  22. Neuroscience. 2018 Dec 1;394:30-43 [PMID: 30316910]
  23. Neuropharmacology. 2016 Sep;108:426-39 [PMID: 27178134]
  24. Exp Anim. 2017 Oct 30;66(4):405-416 [PMID: 28701620]
  25. Int J Biol Macromol. 2020 Jul 1;154:773-787 [PMID: 32199919]
  26. Neurotherapeutics. 2018 Jan;15(1):135-145 [PMID: 29340928]
  27. Neuropharmacology. 2013 Nov;74:32-40 [PMID: 23628345]
  28. J Am Soc Nephrol. 2017 Feb;28(2):557-574 [PMID: 27647854]
  29. J Alzheimers Dis. 2016 Apr 21;52(4):1237-43 [PMID: 27104902]
  30. PLoS One. 2015 Jun 22;10(6):e0131266 [PMID: 26098332]
  31. Metabolites. 2020 Aug 31;10(9): [PMID: 32878308]
  32. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8162-7 [PMID: 15148382]
  33. Cell. 2014 Jan 16;156(1-2):84-96 [PMID: 24412651]
  34. Front Endocrinol (Lausanne). 2020 Jan 31;11:25 [PMID: 32082260]
  35. J Nutr. 2004 Mar;134(3):489-92 [PMID: 14988435]
  36. Alzheimers Dement. 2011 May;7(3):309-17 [PMID: 21075060]
  37. J Alzheimers Dis. 2018;63(4):1337-1346 [PMID: 29758946]
  38. Gut. 2020 Feb;69(2):283-294 [PMID: 31471351]
  39. Int J Mol Sci. 2020 Feb 22;21(4): [PMID: 32098382]
  40. Nutrients. 2020 Dec 24;13(1): [PMID: 33374235]
  41. Alzheimer Dis Assoc Disord. 2008 Jul-Sep;22(3):269-77 [PMID: 18580584]
  42. Front Immunol. 2020 Dec 10;11:604179 [PMID: 33362788]
  43. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  44. Alzheimers Dement. 2018 Apr;14(4):483-491 [PMID: 29433981]
  45. Sci Rep. 2020 Dec 10;10(1):21745 [PMID: 33303834]
  46. Life Sci. 2019 May 15;225:88-97 [PMID: 30953642]
  47. Microbiome. 2014 Feb 24;2(1):6 [PMID: 24558975]
  48. Microbiologyopen. 2018 Dec;7(6):e00611 [PMID: 29575567]
  49. Appl Environ Microbiol. 2007 Aug;73(16):5261-7 [PMID: 17586664]
  50. Nat Microbiol. 2020 Mar;5(3):511-524 [PMID: 31988379]
  51. OMICS. 2020 Oct;24(10):592-601 [PMID: 32907488]
  52. Sci Rep. 2017 Sep 8;7(1):11047 [PMID: 28887494]
  53. Neuroscience. 2014 Jun 13;270:58-68 [PMID: 24699228]
  54. Neurobiol Aging. 2020 Feb;86:123-133 [PMID: 31785839]
  55. Neurochem Int. 2010 Jul;56(8):937-47 [PMID: 20398713]
  56. Neurobiol Aging. 2017 Jan;49:60-68 [PMID: 27776263]
  57. Microbiome. 2016 Jul 07;4(1):36 [PMID: 27388460]
  58. Gut Pathog. 2016 Feb 12;8:3 [PMID: 26877770]
  59. Neurotherapeutics. 2019 Jul;16(3):741-760 [PMID: 30815845]
  60. Clin Psychopharmacol Neurosci. 2018 May 31;16(2):153-160 [PMID: 29739128]
  61. Eur J Pharmacol. 2012 Jun 15;685(1-3):59-69 [PMID: 22542656]
  62. Prog Neurobiol. 2013 Sep;108:21-43 [PMID: 23850509]
  63. Food Funct. 2019 Sep 1;10(9):5656-5668 [PMID: 31433414]
  64. Int J Syst Evol Microbiol. 2008 Jan;58(Pt 1):103-9 [PMID: 18175692]
  65. Sci Rep. 2018 Dec 18;8(1):17931 [PMID: 30560948]
  66. Ann N Y Acad Sci. 2000 Apr;903:204-21 [PMID: 10818509]
  67. PLoS One. 2010 Apr 15;5(4):e10195 [PMID: 20419112]
  68. Int J Mol Med. 2010 Nov;26(5):751-8 [PMID: 20878098]
  69. Nutrients. 2018 Nov 14;10(11): [PMID: 30441866]
  70. J Neuroinflammation. 2020 Jan 17;17(1):25 [PMID: 31952509]
  71. J Alzheimers Dis. 2019;70(2):399-412 [PMID: 31177213]
  72. J Alzheimers Dis. 2009;18(3):515-23 [PMID: 19584449]
  73. Food Chem Toxicol. 2020 Apr;138:111237 [PMID: 32145354]
  74. J Alzheimers Dis. 2015;49(4):971-90 [PMID: 26519439]
  75. J Alzheimers Dis. 2017;60(4):1241-1257 [PMID: 29036812]
  76. Neurobiol Dis. 2019 Jul;127:264-277 [PMID: 30878533]
  77. Cell. 2016 Jun 2;165(6):1332-1345 [PMID: 27259147]
  78. Neuropharmacology. 2018 Jun;135:48-62 [PMID: 29501615]
  79. Antonie Van Leeuwenhoek. 2015 Dec;108(6):1309-1318 [PMID: 26349481]
  80. Mol Brain. 2014 Sep 13;7:65 [PMID: 25213836]
  81. Microbiome. 2019 Feb 19;7(1):28 [PMID: 30782206]
  82. Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2395-402 [PMID: 25281826]
  83. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5588-93 [PMID: 15809416]
  84. Neurology. 2001 Mar 27;56(6):737-42 [PMID: 11274307]
  85. Int J Genomics. 2018 Feb 11;2018:1361402 [PMID: 29607310]
  86. Nervenarzt. 2019 Sep;90(9):898-906 [PMID: 31428829]
  87. Int J Syst Evol Microbiol. 2010 Jun;60(Pt 6):1296-1302 [PMID: 19667375]
  88. J Exp Med. 2019 Nov 4;216(11):2602-2618 [PMID: 31420376]
  89. Cell Host Microbe. 2019 May 8;25(5):681-694.e8 [PMID: 31006637]
  90. Curr Alzheimer Res. 2015;12(4):298-313 [PMID: 25731620]
  91. Biomed Pharmacother. 2020 Jan;121:109421 [PMID: 31743877]

MeSH Term

Animals
Longitudinal Studies
Metabolomics
Mice
Mice, Inbred C57BL
Mice, Knockout
RNA, Ribosomal, 16S

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0micemetabolismADPScDKOmicrobiotametabolicchangesmetabolomicmicrobioticgutdiseaseageUrinaryanalysisagespathwaysignaturesearlymaturepresenilin1/2conditionaldoubleknockoutC57BL/6wild-typeWTrelationship16SrRNAfunctionaldifferentialurinarymetabolitesdisplayedglycinereducedmicrobiomemayBACKGROUND:Givenclinicallowefficienttreatmentbasedmono-brain-targetdesignAlzheimer'sincreasingemphasismicrobiome-gut-brainaxisconsideredcrucialaffectprogressalongintegrativecommunityprofilingsapplied2-month6-monthexhibitseriesAD-likephenotypescomparinggenderage-matchedclarifyprogressionMATERIALSANDMETHODS:fecalsamplesgender-matched26 monthscollectedmeasuredgaschromatography-time-of-flightmassspectrometerwellsequenceperformedanalysecompositionFurthermorecombiningpredictionSpearman'scorrelationcoefficientexploreRESULTS:additionmemoryimpairmentlongitudinalstudyxylitoldisturbedpathwaysinvolvedserinethreonineglyoxylatedicarboxylatepentoseglucuronateinterconversionsstarchsucrosecitratecycleconsistentpredictedincludingenergylipidglycanbiosynthesisBesidesrichnessevennessincreasesLactobacillusdecreasesnorank_f_MuribaculaceaeLachnospiraceae_NK4A136_groupMucispirillumOdoribacteralteredexceedinglyassociatedlevelsCONCLUSIONS:metabolomicspartiallymediatedgut microbiotaintegratedmicrobeshostprovidereferencepathogenesisalterationssequencingAlzheimer’sGutMetabolomics

Similar Articles

Cited By