Multiple functions of autophagy in vascular calcification.

Xin Zhou, Sui-Ning Xu, Shu-Tong Yuan, Xinjuan Lei, Xiaoying Sun, Lu Xing, Hui-Jin Li, Chun-Xia He, Wei Qin, Dong Zhao, Peng-Quan Li, Edward Moharomd, Xuehong Xu, Hui-Ling Cao
Author Information
  1. Xin Zhou: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  2. Sui-Ning Xu: Department of Cardiology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  3. Shu-Tong Yuan: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  4. Xinjuan Lei: Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences University Hospital Medical Center, Xi'an, 710062, Shaanxi, China.
  5. Xiaoying Sun: College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
  6. Lu Xing: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  7. Hui-Jin Li: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  8. Chun-Xia He: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  9. Wei Qin: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  10. Dong Zhao: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  11. Peng-Quan Li: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
  12. Edward Moharomd: Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. edwh_mohard@jhmi.edu.
  13. Xuehong Xu: Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences University Hospital Medical Center, Xi'an, 710062, Shaanxi, China. xhx0708@snnu.edu.cn.
  14. Hui-Ling Cao: Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi, China. caohuiling.jzs@xiyi.edu.cn.

Abstract

BACKGROUND: Vascular calcification is a closely linked to cardiovascular diseases, such as atherosclerosis, chronic kidney disease, diabetes, hypertension and aging. The extent of vascular calcification is closely correlate with adverse clinical events and cardiovascular all-cause mortality. The role of autophagy in vascular calcification is complex with many mechanistic unknowns.
METHODS: In this review, we analyze the current known mechanisms of autophagy in vascular calcification and discuss the theoretical advantages of targeting autophagy as an intervention against vascular calcification.
RESULTS: Here we summarize the functional link between vascular calcification and autophagy in both animal models of and human cardiovascular disease. Firstly, autophagy can reduce calcification by inhibiting the osteogenic differentiation of VSMCs related to ANCR, ERα, β-catenin, HIF-1a/PDK4, p62, miR-30b, BECN1, mTOR, SOX9, GHSR/ERK, and AMPK signaling. Conversely, autophagy can induce osteoblast differentiation and calcification as mediated by CREB, degradation of elastin, and lncRNA H19 and DUSP5 mediated ERK signaling. Secondly, autophagy also links apoptosis and vascular calcification through AMPK/mTOR/ULK1, Wnt/β-catenin and GAS6/AXL synthesis, as apoptotic cells become the nidus for calcium-phosphate crystal deposition. The failure of mitophagy can activate Drp1, BNIP3, and NR4A1/DNA‑PKcs/p53 mediated intrinsic apoptotic pathways, which have been closely linked to the formation of vascular calcification. Additionally, autophagy also plays a role in osteogenesis by regulating vascular calcification, which in turn regulates expression of proteins related to bone development, such as osteocalcin, osteonectin, etc. and regulated by mTOR, EphrinB2 and RhoA. Furthermore, autophagy also promotes vitamin K2-induced MC3T3 E1 osteoblast differentiation and FGFR4/FGF18- and JNK/complex VPS34-beclin-1-related bone mineralization via vascular calcification.
CONCLUSION: The interaction between autophagy and vascular calcification are complicated, with their interaction affected by the disease process, anatomical location, and the surrounding microenvironment. Autophagy activation in existent cellular damage is considered protective, while defective autophagy in normal cells result in apoptotic activation. Identifying and maintaining cells at the delicate line between these two states may hold the key to reducing vascular calcification, in which autophagy associated clinical strategy could be developed.

Keywords

References

  1. Ecotoxicol Environ Saf. 2019 Jan 15;167:169-177 [PMID: 30336407]
  2. Cell Signal. 2019 Jun;58:53-64 [PMID: 30851408]
  3. Circ Res. 2015 Apr 10;116(8):1312-23 [PMID: 25711438]
  4. BMC Cardiovasc Disord. 2014 Mar 01;14:29 [PMID: 24581344]
  5. Cardiovasc Res. 2018 Mar 15;114(4):590-600 [PMID: 29514202]
  6. Bone. 2017 Jul;100:87-93 [PMID: 27847254]
  7. Int J Mol Sci. 2019 Nov 25;20(23): [PMID: 31775364]
  8. Annu Rev Cell Dev Biol. 2018 Oct 6;34:311-332 [PMID: 30089222]
  9. Front Pharmacol. 2019 Dec 19;10:1427 [PMID: 31920640]
  10. Development. 2016 Aug 1;143(15):2706-15 [PMID: 27486231]
  11. Mol Cell Endocrinol. 2019 Jan 5;479:39-53 [PMID: 30170182]
  12. Cell Signal. 2019 Jan;53:357-364 [PMID: 30442596]
  13. Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):191-204 [PMID: 27908890]
  14. Curr Pharm Des. 2012;18(11):1519-30 [PMID: 22364136]
  15. J Intern Med. 2017 May;281(5):471-482 [PMID: 28345303]
  16. PLoS One. 2015 Sep 14;10(9):e0138047 [PMID: 26367531]
  17. BMC Genomics. 2014 Nov 07;15:965 [PMID: 25380738]
  18. Biomed Pharmacother. 2018 Aug;104:485-495 [PMID: 29800913]
  19. Front Cardiovasc Med. 2018 Nov 23;5:172 [PMID: 30533416]
  20. Cardiovasc Res. 2017 Nov 1;113(13):1639-1652 [PMID: 29016732]
  21. Blood. 2015 Apr 9;125(15):2405-17 [PMID: 25724378]
  22. Cancer. 2018 Aug;124(16):3307-3318 [PMID: 29671878]
  23. Circ Res. 2000 Nov 24;87(11):1055-62 [PMID: 11090552]
  24. Int J Mol Sci. 2020 Apr 13;21(8): [PMID: 32294899]
  25. J Cell Mol Med. 2020 Feb;24(3):2240-2251 [PMID: 31957239]
  26. Apoptosis. 2020 Jun;25(5-6):321-340 [PMID: 31993850]
  27. Sci Rep. 2019 Dec 27;9(1):20071 [PMID: 31882658]
  28. J Surg Res. 2017 Oct;218:285-291 [PMID: 28985862]
  29. Circ Res. 2018 Sep 14;123(7):803-824 [PMID: 30355077]
  30. Cell Death Dis. 2017 Jul 13;8(7):e2917 [PMID: 28703797]
  31. Basic Res Cardiol. 2020 Jun 6;115(4):41 [PMID: 32506214]
  32. Cell Physiol Biochem. 2017;42(2):530-536 [PMID: 28578340]
  33. Mol Med Rep. 2019 May;19(5):3676-3684 [PMID: 30896842]
  34. Medicina (Kaunas). 2018 Apr 25;54(2): [PMID: 30344255]
  35. Kidney Int. 2017 Apr;91(4):808-817 [PMID: 27914706]
  36. JCI Insight. 2017 Oct 5;2(19): [PMID: 28978809]
  37. Cell Commun Signal. 2015 Aug 08;13:37 [PMID: 26253153]
  38. Hypertension. 2015 Nov;66(5):1006-13 [PMID: 26324504]
  39. Clin Interv Aging. 2017 Oct 30;12:1819-1828 [PMID: 29133976]
  40. Expert Rev Clin Pharmacol. 2015 Mar;8(2):189-99 [PMID: 25655639]
  41. Circulation. 2020 Mar 3;141(9):728-739 [PMID: 31707860]
  42. Kidney Int. 2013 Jun;83(6):984-6 [PMID: 23727998]
  43. Toxicol Appl Pharmacol. 2019 Feb 1;364:45-54 [PMID: 30529164]
  44. Circulation. 2020 Mar 3;141(9):740-742 [PMID: 32119585]
  45. Bone. 2013 Jan;52(1):524-31 [PMID: 23111315]
  46. Cell. 2011 Nov 11;147(4):728-41 [PMID: 22078875]
  47. Biomed Res Int. 2014;2014:603980 [PMID: 25328887]
  48. Sci Rep. 2018 Aug 14;8(1):12087 [PMID: 30108259]
  49. J Cell Sci. 2014 Dec 15;127(Pt 24):5303-16 [PMID: 25359883]
  50. Circ Res. 2006 Nov 10;99(10):1044-59 [PMID: 17095733]
  51. Front Cardiovasc Med. 2017 Dec 11;4:78 [PMID: 29322046]
  52. Int J Mol Sci. 2017 Jun 16;18(6): [PMID: 28621712]
  53. Nat Rev Mol Cell Biol. 2008 Dec;9(12):1004-10 [PMID: 18971948]
  54. Cell Biosci. 2018 Apr 3;8:25 [PMID: 29636894]
  55. Life Sci. 2017 Jun 15;179:23-29 [PMID: 27916732]
  56. Cell Biosci. 2018 Jun 8;8:39 [PMID: 29930797]
  57. Front Mol Neurosci. 2020 Apr 21;13:59 [PMID: 32457577]
  58. Oncogene. 2017 Nov 30;36(48):6712-6724 [PMID: 28783179]
  59. Int J Endocrinol. 2017;2017:7454376 [PMID: 29138634]
  60. Nature. 2015 Dec 10;528(7581):272-5 [PMID: 26595272]
  61. Cell Physiol Biochem. 2014;33(1):129-41 [PMID: 24481040]
  62. J Cell Physiol. 2019 Aug;234(8):14306-14318 [PMID: 30701530]
  63. Toxins (Basel). 2019 Jul 21;11(7): [PMID: 31330917]
  64. J Alzheimers Dis. 2011;23(1):21-35 [PMID: 20930278]
  65. Aging (Albany NY). 2019 Jun 26;11(12):4274-4299 [PMID: 31241466]
  66. Sci Rep. 2017 Jun 14;7(1):3549 [PMID: 28615727]
  67. Circ Res. 2015 Apr 10;116(8):1477-90 [PMID: 25858070]
  68. Cardiovasc Res. 2018 Mar 15;114(4):622-634 [PMID: 29360955]
  69. Eur Heart J. 2014 Jun 14;35(23):1515-25 [PMID: 24740885]
  70. Cell Biochem Funct. 2014 Mar;32(2):209-16 [PMID: 24604335]
  71. Biochem Biophys Res Commun. 2019 Sep 24;517(3):470-476 [PMID: 31376939]
  72. Nephron. 2019;141(4):287-294 [PMID: 30783062]
  73. Cell Biosci. 2018 Mar 27;8:24 [PMID: 29599964]
  74. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2582-91 [PMID: 23798385]
  75. Nat Commun. 2019 Jul 31;10(1):3436 [PMID: 31366886]
  76. Int J Mol Sci. 2019 Mar 25;20(6): [PMID: 30934548]
  77. Int J Mol Sci. 2019 Nov 14;20(22): [PMID: 31739395]
  78. Cell Stem Cell. 2016 Nov 3;19(5):628-642 [PMID: 27618218]
  79. Plant Cell. 2014 Dec;26(12):4974-90 [PMID: 25538184]
  80. Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):715-23 [PMID: 24665125]
  81. Kidney Int. 2013 Jun;83(6):1042-51 [PMID: 23364520]
  82. Atherosclerosis. 2016 Nov;254:93-101 [PMID: 27716569]
  83. Exp Cell Res. 2020 Apr 1;389(1):111883 [PMID: 32014443]
  84. Sci Rep. 2018 Sep 13;8(1):13730 [PMID: 30213959]
  85. Kidney Int. 2018 Feb;93(2):343-354 [PMID: 29032812]
  86. Biomed Res Int. 2016;2016:7419524 [PMID: 27419135]
  87. Vascul Pharmacol. 2016 Nov;86:77-86 [PMID: 27389001]
  88. J Clin Invest. 2014 Jun;124(6):2410-24 [PMID: 24789905]
  89. Biochem Biophys Res Commun. 2014 Aug 29;451(3):436-41 [PMID: 25111813]
  90. J Bone Miner Metab. 2020 Jul;38(4):421-431 [PMID: 31974677]
  91. Circ Res. 2017 May 26;120(11):1812-1824 [PMID: 28546358]
  92. Int J Biol Sci. 2020 Jul 30;16(14):2675-2691 [PMID: 32792864]
  93. PLoS One. 2012;7(4):e33126 [PMID: 22514603]
  94. Sci Rep. 2019 Jul 17;9(1):10366 [PMID: 31316111]
  95. Front Cardiovasc Med. 2019 Feb 05;6:6 [PMID: 30805347]
  96. J Cell Physiol. 2020 Mar;235(3):2220-2231 [PMID: 31489629]
  97. Mol Cell Biochem. 2015 Dec;410(1-2):197-206 [PMID: 26346159]
  98. J Cell Biochem. 2020 Jun;121(5-6):3333-3344 [PMID: 31898335]
  99. Nature. 2015 Jun 18;522(7556):354-8 [PMID: 26040720]
  100. Cell Mol Life Sci. 2019 Jun;76(11):2077-2091 [PMID: 30887097]
  101. Cancers (Basel). 2019 Sep 29;11(10): [PMID: 31569540]
  102. Eur J Vasc Endovasc Surg. 2018 Mar;55(3):425-432 [PMID: 29371036]
  103. Autophagy. 2014;10(11):1965-77 [PMID: 25484092]

Grants

  1. 2020JQ-885/Natural Science Basic Research Program Youth Project of Shaanxi Provincial Science and Technology Department
  2. U1932130/National Natural Science Foundation of China
  3. 31700699/National Natural Science Foundation of China
  4. 31771377/31571273/31371256/National Natural Science Foundation of China
  5. 20JS138/Key Program of Shaanxi Provincial Education Department
  6. 2019-ZZ-ZY009/Program of Shaanxi Administration of Traditional Chinese Medicine
  7. 201928/Key Program of Weiyang District Bureau of Science, Technology and Industry Information Technology
  8. 121520012/College Student Innovation Training Program of Xi'an Medical University
  9. 202000C28/Doctorial Program from Xi'an Medical University
  10. GK201301001/201701005/Ministry of Education Central Universities Research

Word Cloud

Created with Highcharts 10.0.0calcificationautophagyvasculardifferentiationcloselycardiovasculardiseasecanmediatedalsoapoptoticcellsVascularlinkedclinicalroleVSMCsrelatedHIF-1a/PDK4mTORsignalingosteoblastGAS6/AXLboneEphrinB2interactionactivationBACKGROUND:diseasesatherosclerosischronickidneydiabeteshypertensionagingextentcorrelateadverseeventsall-causemortalitycomplexmanymechanisticunknownsMETHODS:reviewanalyzecurrentknownmechanismsdiscusstheoreticaladvantagestargetinginterventionRESULTS:summarizefunctionallinkanimalmodelshumanFirstlyreduceinhibitingosteogenicANCRERαβ-cateninp62miR-30bBECN1SOX9GHSR/ERKAMPKConverselyinduceCREBdegradationelastinlncRNAH19DUSP5ERKSecondlylinksapoptosisAMPK/mTOR/ULK1Wnt/β-cateninsynthesisbecomeniduscalcium-phosphatecrystaldepositionfailuremitophagyactivateDrp1BNIP3NR4A1/DNA‑PKcs/p53intrinsicpathwaysformationAdditionallyplaysosteogenesisregulatingturnregulatesexpressionproteinsdevelopmentosteocalcinosteonectinetcregulatedRhoAFurthermorepromotesvitaminK2-inducedMC3T3E1FGFR4/FGF18-JNK/complexVPS34-beclin-1-relatedmineralizationviaCONCLUSION:complicatedaffectedprocessanatomicallocationsurroundingmicroenvironmentAutophagyexistentcellulardamageconsideredprotectivedefectivenormalresultIdentifyingmaintainingdelicatelinetwostatesmayholdkeyreducingassociatedstrategydevelopedMultiplefunctionsAMPK/mTORAutophagy/mitophagyOsteoblasticOsteogenesis

Similar Articles

Cited By