Sclerosing Sialadenitis Is Associated With Salivary Gland Hypofunction and a Unique Gene Expression Profile in Sjögren's Syndrome.

Hongen Yin, Thomas J F Pranzatelli, Benjamin N French, Nan Zhang, Blake M Warner, John A Chiorini, NIDCD/NIDCR Genomics and Computational Biology Core
Author Information
  1. Hongen Yin: Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.
  2. Thomas J F Pranzatelli: Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.
  3. Benjamin N French: Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.
  4. Nan Zhang: Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.
  5. Blake M Warner: Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.
  6. John A Chiorini: Adeno-Associated Virus (AAV) Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.

Abstract

Purpose: To develop a novel method to quantify the amount of fibrosis in the salivary gland and to investigate the relationship between fibrosis and specific symptoms associated with Sjögren's syndrome (SS) using this method.
Materials and Methods: Paraffin-embedded labial salivary gland (LSG) slides from 20 female SS patients and their clinical and LSG pathology data were obtained from the Sjögren's International Collaborative Clinical Alliance. Relative interstitial fibrosis area (RIFA) in Masson's trichrome-stained LSG sections was quantified from digitally scanned slides and used for correlation analysis. Gene expression levels were assessed by microarray analysis. Core promoter accessibility for RIFA-correlated genes was determined using DNase I hypersensitive sites sequencing analysis.
Results: RIFA was significantly correlated with unstimulated whole saliva flow rate in SS patients. Sixteen genes were significantly and positively correlated with RIFA. In a separate analysis, a group of differentially expressed genes was identified by comparing severe and moderate fibrosis groups. This combined set of genes was distinct from differentially expressed genes identified in lung epithelium from idiopathic pulmonary fibrosis patients compared with controls. Single-cell RNA sequencing analysis of salivary glands suggested most of the RIFA-correlated genes are expressed by fibroblasts in the gland and are in a permissive chromatin state.
Conclusion: RIFA quantification is a novel method for assessing interstitial fibrosis and the impact of fibrosis on SS symptoms. Loss of gland function may be associated with salivary gland fibrosis, which is likely to be driven by a unique set of genes that are mainly expressed by fibroblasts.

Keywords

Associated Data

ClinicalTrials.gov | NCT02327884

References

  1. Exp Cell Res. 2010 Apr 1;316(6):900-6 [PMID: 19944684]
  2. Ann Rheum Dis. 1995 Sep;54(9):744-7 [PMID: 7495347]
  3. Rheumatology (Oxford). 2007 Feb;46(2):350-7 [PMID: 16908509]
  4. J Am Soc Nephrol. 2013 Sep;24(9):1399-412 [PMID: 23766539]
  5. Clin Chest Med. 1998 Dec;19(4):587-612, vii [PMID: 9917955]
  6. Reumatologia. 2019;57(6):309-314 [PMID: 32226163]
  7. Clin Exp Rheumatol. 2018 May-Jun;36 Suppl 112(3):80-88 [PMID: 29148407]
  8. PLoS One. 2019 Jul 3;14(7):e0218971 [PMID: 31269038]
  9. Breast Cancer Res. 2013 Aug 23;15(2):R66 [PMID: 23971832]
  10. J Dent Res. 2019 Feb;98(2):209-217 [PMID: 30392435]
  11. OMICS. 2009 Jun;13(3):173-84 [PMID: 19405797]
  12. Oncol Lett. 2018 Aug;16(2):2490-2494 [PMID: 30013642]
  13. Nucleic Acids Res. 2015 Aug 18;43(14):6799-813 [PMID: 26150419]
  14. J Endocr Soc. 2018 Jun 05;2(7):710-726 [PMID: 29978150]
  15. J Clin Invest. 2004 Aug;114(3):438-46 [PMID: 15286810]
  16. J Clin Invest. 2009 Jun;119(6):1420-8 [PMID: 19487818]
  17. Nat Clin Pract Rheumatol. 2006 Mar;2(3):134-44 [PMID: 16932673]
  18. Sci Rep. 2020 Feb 19;10(1):2967 [PMID: 32076051]
  19. Arthritis Rheum. 2011 Jul;63(7):2021-30 [PMID: 21480190]
  20. BMC Pulm Med. 2017 Jan 12;17(1):15 [PMID: 28081703]
  21. J Pers Med. 2016 Jan 15;6(1): [PMID: 26784235]
  22. J Cell Physiol. 2019 Feb 5;: [PMID: 30723913]
  23. Biomed Res Int. 2013;2013:125469 [PMID: 24089659]
  24. Kidney Int. 2001 Feb;59(2):579-92 [PMID: 11168939]
  25. Nucleus. 2016;7(1):50-67 [PMID: 26962893]
  26. J Biol Chem. 2007 Aug 10;282(32):23337-47 [PMID: 17562716]
  27. J Pathol. 2010 Sep;222(1):21-31 [PMID: 20549648]
  28. Arthritis Rheum. 2011 Jul;63(7):2014-20 [PMID: 21337320]
  29. PLoS One. 2014 Feb 13;9(2):e82852 [PMID: 24551030]
  30. Oncotarget. 2017 Aug 9;8(46):80531-80544 [PMID: 29113323]
  31. Mol Cancer Res. 2012 Mar;10(3):293-304 [PMID: 22267545]
  32. Am J Pathol. 1991 Dec;139(6):1221-9 [PMID: 1750499]
  33. Biochem Biophys Res Commun. 2011 Jun 10;409(3):442-7 [PMID: 21596022]
  34. BMC Musculoskelet Disord. 2015 Feb 15;16:30 [PMID: 25887888]
  35. Histol Histopathol. 2014 Mar;29(3):305-12 [PMID: 24189993]
  36. Lancet. 2005 Jul 23-29;366(9482):321-31 [PMID: 16039337]
  37. Nat Rev Rheumatol. 2010 Sep;6(9):529-37 [PMID: 20683439]
  38. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3317-22 [PMID: 26951679]
  39. J Cell Mol Med. 2020 Jan;24(1):830-840 [PMID: 31692229]
  40. Cells. 2019 Aug 26;8(9): [PMID: 31455013]
  41. Autoimmun Rev. 2011 Mar;10(5):267-75 [PMID: 20863909]
  42. Kidney Int. 2002 Jul;62(1):137-46 [PMID: 12081572]
  43. Am J Respir Crit Care Med. 2005 Mar 15;171(6):632-8 [PMID: 15579729]
  44. Ann Rheum Dis. 2020 Feb;79(2):268-275 [PMID: 31848144]
  45. Int J Biochem Mol Biol. 2012;3(2):117-36 [PMID: 22773954]
  46. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15449-54 [PMID: 20713713]
  47. Genes Immun. 2014 Mar;15(2):88-94 [PMID: 24335707]
  48. Exp Cell Res. 2017 Oct 1;359(1):226-234 [PMID: 28736081]
  49. Clin Epigenetics. 2016 Sep 22;8:102 [PMID: 27688818]
  50. Arthritis Rheumatol. 2017 Jan;69(1):35-45 [PMID: 27785888]
  51. Lab Invest. 2010 Apr;90(4):543-55 [PMID: 20142803]
  52. Leuk Res. 2010 Jul;34(7):871-6 [PMID: 20122729]
  53. Lancet. 2012 Aug 18;380(9842):680-8 [PMID: 22901889]
  54. Drug Discov Today. 2009 Oct;14(19-20):935-41 [PMID: 19596461]
  55. Pancreatology. 2006;6(1-2):132-7 [PMID: 16327291]
  56. Nat Med. 2012 Jul 06;18(7):1028-40 [PMID: 22772564]
  57. Genes Dev. 2016 Jun 15;30(12):1454-69 [PMID: 27313318]
  58. Am J Pathol. 2001 Jul;159(1):369-79 [PMID: 11438484]

Grants

  1. Z01 DE000704/Intramural NIH HHS
  2. ZIC DC000086/Intramural NIH HHS
  3. ZIA DE000695/Intramural NIH HHS

MeSH Term

Female
Fibrosis
Humans
Salivary Glands
Sialadenitis
Sjogren's Syndrome
Transcriptome

Word Cloud

Created with Highcharts 10.0.0fibrosisglandgenessalivaryanalysisSSRIFAexpressedmethodSjögren'sLSGpatientsinterstitialnovelsymptomsassociatedsyndromeusingslidesGeneexpressionRIFA-correlatedsequencingsignificantlycorrelateddifferentiallyidentifiedsetfibroblastsPurpose:developquantifyamountinvestigaterelationshipspecificMaterialsMethods:Paraffin-embeddedlabial20femaleclinicalpathologydataobtainedInternationalCollaborativeClinicalAllianceRelativeareaMasson'strichrome-stainedsectionsquantifieddigitallyscannedusedcorrelationlevelsassessedmicroarrayCorepromoteraccessibilitydeterminedDNasehypersensitivesitesResults:unstimulatedwholesalivaflowrateSixteenpositivelyseparategroupcomparingseveremoderategroupscombineddistinctlungepitheliumidiopathicpulmonarycomparedcontrolsSingle-cellRNAglandssuggestedpermissivechromatinstateConclusion:quantificationassessingimpactLossfunctionmaylikelydrivenuniquemainlySclerosingSialadenitisAssociatedSalivaryGlandHypofunctionUniqueExpressionProfileSyndromeSjögren’shypofunctionsclerosingsialadenitistranscriptomicgeneprofile

Similar Articles

Cited By