DJMol: An open-source modeling platform for computational chemistry and materials science with a Python interpreter.

Krishnamohan G Prasanna, Rahul Sunil, Kapil Gupta, Seung-Cheol Lee
Author Information
  1. Krishnamohan G Prasanna: Department of Science and Humanities, Mar Baselios College of Engineering and Technology, Trivandrum, Kerala, India. ORCID
  2. Rahul Sunil: Department of Computer Science, Mar Baselios College of Engineering and Technology, Trivandrum, Kerala, India.
  3. Kapil Gupta: Indo-Korea Science and Technology Center, Bengaluru, Karnataka, India.
  4. Seung-Cheol Lee: Indo-Korea Science and Technology Center, Bengaluru, Karnataka, India. ORCID

Abstract

We present a modular and extendable software suite, DJMol, for performing molecular simulations and it is demonstrated with DFTB+, Siesta, Atomic Simulation Environment, and OpenMD codes. It supports many of the standard features of an integrated development environment and consists of a structure builder and viewer, which could be connected with these electronic structure codes along with a set of data analyzers. This program comprises Java and Python modules and its libraries to carry out a different set of modeling tasks in materials science and chemistry. By adopting a Python interpreter into the software, a range of scriptable Python codes, such as Pymatgen can be incorporated into this programmable modeling platform. DJMol, through its common application programming interface (API), supports multiple modeling codes in the backend and several post-processing tools. It benefits an experienced user by increasing efficiency, while a nonexpert user by easy to use API.

Keywords

References

  1. S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys. Condens. Matter 2020, 32, 15901.
  2. MedeA, https://www.materialsdesign.com, (2020).
  3. V. Ganesh, J. Comput. Chem. 2009, 30, 661.
  4. ExaByte, https://exabyte.io, (2020).
  5. Materials square, https://www.materialssquare.com, (2020).
  6. B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678.
  7. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 2002, 14, 2745.
  8. A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K. W. Jacobsen, J. Phys. Condens. Matter 2017, 29, 273002.
  9. OpenMD, https://github.com/OpenMD/OpenMD (2020).
  10. ADF 2021. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
  11. B. Strousstrup, Programming: Principles and Practice Using C++, Addison-Wesley, MA, USA 2014.
  12. H. Bock, The Definitive Guide to NetBeans Platform 7, Apress, New York, USA 2012.
  13. Jmol: an open-source Java viewer for chemical structures in 3D, http://www.jmol.org, (2020).
  14. R. M. Hanson, J. Appl. Crystallogr. 2010, 43, 1250.
  15. R. J. Largent, W. F. Polik, J. R. Schmidt, J. Comput. Chem. 2012, 33, 1637.
  16. N. M. O'Boyle, R. Guha, E. L. Willighagen, S. E. Adams, J. Alvarsson, J.-C. Bradley, I. V. Filippov, R. M. Hanson, M. D. Hanwell, G. R. Hutchison, C. A. James, N. Jeliazkova, A. S. Lang, K. M. Langner, D. C. Lonie, D. M. Lowe, J. Pansanel, D. Pavlov, O. Spjuth, C. Steinbeck, A. L. Tenderholt, K. J. Theisen, P. Murray-Rust, Aust. J. Chem. 2011, 3, 1.
  17. A. Thorne, U. Litzen, Spectrophysics: Principles and Applications, Springer, Heidelberg 1997.
  18. Dipole autocorrelation function, https://github.com/LePingKYXK/Dipole-ACF, (2020).
  19. Velocity autocorrelation function, https://github.com/LePingKYXK/Velocity-ACF,(2020).
  20. Nanocut, https://github.com/aradi/nanocut (2020).
  21. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, G. Ceder, Comp. Mater. Sci. 2013, 68, 314.
  22. LAtticeDYnamic tools, https://github.com/ladyteam/LADYtools, (2020).
  23. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comp. Phys. Commun. 2014, 185, 2309.
  24. SISL, https://github.com/zerothi/sisl, (2020).
  25. inelastica, https://github.com/tfrederiksen/inelastica, (2020).
  26. S. Kundu, S. Bhattacharjee, S. C. Lee, M. Jain, Comp. Phys. Commun. 2018, 233, 261.

Word Cloud

Created with Highcharts 10.0.0PythonmodelingcodessoftwareDJMolmolecularsimulationssupportsstructuresetmaterialssciencechemistryinterpreterplatformapplicationprogramminginterfaceAPIuserpresentmodularextendablesuiteperformingdemonstratedDFTB+SiestaAtomicSimulationEnvironmentOpenMDmanystandardfeaturesintegrateddevelopmentenvironmentconsistsbuilderviewerconnectedelectronicalongdataanalyzersprogramcomprisesJavamoduleslibrariescarrydifferenttasksadoptingrangescriptablePymatgencanincorporatedprogrammablecommonmultiplebackendseveralpost-processingtoolsbenefitsexperiencedincreasingefficiencynonexperteasyuseDJMol:open-sourcecomputationalatomistic

Similar Articles

Cited By