Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase.

Zhike Feng, Jun-Ichi Inaba, Peter D Nagy
Author Information
  1. Zhike Feng: Department of Plant Pathology, University of Kentuckygrid.266539.d, Lexington, Kentucky, USA.
  2. Jun-Ichi Inaba: Department of Plant Pathology, University of Kentuckygrid.266539.d, Lexington, Kentucky, USA.
  3. Peter D Nagy: Department of Plant Pathology, University of Kentuckygrid.266539.d, Lexington, Kentucky, USA. ORCID

Abstract

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either or heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.

Keywords

References

  1. Biol Open. 2015 May 06;4(7):764-75 [PMID: 25948753]
  2. Front Microbiol. 2019 Feb 26;10:286 [PMID: 30863375]
  3. Nature. 2018 Feb 15;554(7692):382-386 [PMID: 29364868]
  4. Cell Host Microbe. 2017 Nov 8;22(5):639-652.e7 [PMID: 29107644]
  5. Sci Rep. 2016 Feb 11;6:21658 [PMID: 26865414]
  6. PLoS Pathog. 2014 Oct 16;10(10):e1004388 [PMID: 25329172]
  7. Methods Mol Biol. 2003;236:287-94 [PMID: 14501071]
  8. Traffic. 2003 Nov;4(11):754-71 [PMID: 14617358]
  9. Cell. 2020 Dec 10;183(6):1520-1535.e14 [PMID: 33157038]
  10. J Virol. 2015 May;89(10):5714-23 [PMID: 25762742]
  11. Plant J. 2002 Aug;31(3):375-83 [PMID: 12164816]
  12. Cell. 2016 Dec 1;167(6):1623-1635.e14 [PMID: 27889239]
  13. Viruses. 2014 Jul 22;6(7):2826-57 [PMID: 25054883]
  14. J Cell Sci. 2017 Jan 1;130(1):260-268 [PMID: 27026525]
  15. Sci Rep. 2015 Nov 06;5:16320 [PMID: 26541268]
  16. J Virol. 2002 Oct;76(20):10485-96 [PMID: 12239325]
  17. Viruses. 2010 May;2(5):1055-68 [PMID: 21994671]
  18. PLoS Pathog. 2014 Apr 24;10(4):e1004087 [PMID: 24763736]
  19. Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21739-21747 [PMID: 31591191]
  20. Trends Cell Biol. 2017 Mar;27(3):201-213 [PMID: 27838086]
  21. Curr Opin Virol. 2014 Dec;9:119-26 [PMID: 25462443]
  22. Structure. 2014 Mar 4;22(3):397-408 [PMID: 24530282]
  23. Plant Cell. 2014 May 13;26(5):2080-2097 [PMID: 24824487]
  24. PLoS Pathog. 2019 Jan 9;15(1):e1007530 [PMID: 30625229]
  25. Cell Microbiol. 2013 Jan;15(1):24-34 [PMID: 22978691]
  26. Virology. 2011 Jul 5;415(2):141-52 [PMID: 21561636]
  27. Protein Cell. 2019 Jan;10(1):60-66 [PMID: 29876903]
  28. Annu Rev Virol. 2014 Nov;1(1):237-59 [PMID: 26958722]
  29. Virology. 2011 Jan 20;409(2):338-47 [PMID: 21071052]
  30. Proc Natl Acad Sci U S A. 2021 Jan 5;118(1): [PMID: 33376201]
  31. Yeast. 2004 Aug;21(11):947-62 [PMID: 15334558]
  32. Cell Rep. 2015 Sep 1;12(9):1508-18 [PMID: 26299973]
  33. J Virol. 2020 Aug 31;94(18): [PMID: 32641477]
  34. J Virol. 2016 Sep 29;90(20):9194-208 [PMID: 27489278]
  35. J Virol. 2010 Mar;84(5):2270-81 [PMID: 20015981]
  36. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7326-31 [PMID: 15883361]
  37. J Cell Sci. 2010 Dec 1;123(Pt 23):4085-94 [PMID: 21062894]
  38. PLoS Pathog. 2018 May 10;14(5):e1007028 [PMID: 29746582]
  39. Annu Rev Microbiol. 2010;64:241-56 [PMID: 20825348]
  40. Viruses. 2018 Sep 10;10(9): [PMID: 30201857]
  41. Curr Opin Virol. 2012 Dec;2(6):740-7 [PMID: 23036609]
  42. Adv Virus Res. 2020;107:37-86 [PMID: 32711734]
  43. Annu Rev Phytopathol. 2010;48:69-91 [PMID: 20337516]
  44. J Virol. 2012 Dec;86(23):12779-94 [PMID: 22973028]
  45. Cell Host Microbe. 2011 Jan 20;9(1):32-45 [PMID: 21238945]
  46. PLoS Biol. 2016 Oct 19;14(10):e2000128 [PMID: 27760128]
  47. Virology. 2003 Sep 15;314(1):315-25 [PMID: 14517084]
  48. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):E1782-91 [PMID: 25810252]
  49. PLoS Pathog. 2013;9(10):e1003683 [PMID: 24098128]
  50. Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21291-21301 [PMID: 31570580]
  51. Curr Opin Virol. 2016 Aug;19:7-10 [PMID: 27280383]
  52. Curr Opin Microbiol. 2016 Aug;32:82-88 [PMID: 27253151]
  53. Curr Opin Virol. 2016 Jun;18:20-6 [PMID: 26985879]
  54. Virology. 2015 May;479-480:418-33 [PMID: 25746936]
  55. Front Cell Dev Biol. 2018 Oct 02;6:129 [PMID: 30333976]
  56. Cells. 2016 Aug 18;5(3): [PMID: 27548222]
  57. Virology. 2007 Jun 5;362(2):320-30 [PMID: 17292435]
  58. Annu Rev Virol. 2015 Nov;2(1):289-310 [PMID: 26958917]
  59. Virology. 2008 Sep 30;379(2):294-305 [PMID: 18684480]
  60. Cell. 2021 Jan 7;184(1):92-105.e16 [PMID: 33147445]
  61. J Exp Bot. 2020 Dec 31;71(22):6932-6944 [PMID: 32926136]
  62. Biochim Biophys Acta. 2013 Mar;1833(3):503-10 [PMID: 23220125]
  63. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22619-22623 [PMID: 31636202]
  64. J Neurosci Res. 2017 Oct;95(10):1993-2004 [PMID: 28186670]
  65. PLoS Pathog. 2021 Mar 16;17(3):e1009423 [PMID: 33725015]
  66. Front Plant Sci. 2013 Jan 31;4:6 [PMID: 23386855]
  67. Annu Rev Virol. 2016 Sep 29;3(1):491-515 [PMID: 27578441]
  68. Annu Rev Phytopathol. 2015;53:45-66 [PMID: 25938276]
  69. Front Cell Infect Microbiol. 2017 Oct 04;7:431 [PMID: 29046869]
  70. PLoS Pathog. 2009 Dec;5(12):e1000705 [PMID: 20041173]
  71. J Virol. 2020 Jun 1;94(12): [PMID: 32269127]
  72. Mol Biol Cell. 2017 Mar 15;28(6):783-791 [PMID: 28100638]
  73. Biosci Trends. 2016 Sep 5;10(4):244-50 [PMID: 27396843]
  74. Small GTPases. 2020 May;11(3):167-173 [PMID: 29099291]
  75. Curr Opin Plant Biol. 2014 Dec;22:116-121 [PMID: 25460076]
  76. Prog Nucleic Acid Res Mol Biol. 2004;78:187-226 [PMID: 15210331]
  77. PLoS Pathog. 2016 Oct 27;12(10):e1005912 [PMID: 27788266]
  78. Elife. 2017 Jun 27;6: [PMID: 28653620]
  79. J Virol. 2016 Jan 20;90(7):3611-26 [PMID: 26792735]
  80. Trends Microbiol. 2016 Jul;24(7):535-546 [PMID: 27020598]
  81. J Virol. 2017 Mar 13;91(7): [PMID: 28100609]
  82. J Cell Biol. 2019 Sep 2;218(9):3019-3038 [PMID: 31431476]
  83. Cell. 2016 Jul 14;166(2):408-423 [PMID: 27419871]
  84. PLoS Pathog. 2020 Dec 28;16(12):e1009120 [PMID: 33370420]
  85. PLoS Pathog. 2017 Jul 31;13(7):e1006520 [PMID: 28759634]
  86. Traffic. 2015 Jan;16(1):68-84 [PMID: 25367362]
  87. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12484-12489 [PMID: 27791088]
  88. Plant Cell Physiol. 2016 Sep;57(9):1854-64 [PMID: 27318282]
  89. Mol Plant Pathol. 2016 Jun;17(5):714-26 [PMID: 26416342]
  90. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19956-61 [PMID: 19060219]
  91. EMBO J. 2018 Jan 17;37(2):235-254 [PMID: 29158324]
  92. Sci Rep. 2021 Apr 12;11(1):7845 [PMID: 33846408]
  93. Plant Physiol. 2014 Mar;164(3):1261-70 [PMID: 24477592]
  94. Nat Rev Microbiol. 2011 Dec 19;10(2):137-49 [PMID: 22183253]
  95. Curr Opin Virol. 2021 Jun;48:30-41 [PMID: 33845410]
  96. J Virol. 2005 Apr;79(8):4859-69 [PMID: 15795271]

Grants

  1. MCB-1517751/National Science Foundation (NSF)
  2. IOS-1922895/National Science Foundation (NSF)
  3. NIFA 2020-70410-32901/U.S. Department of Agriculture (USDA)
  4. KY012042/U.S. Department of Agriculture (USDA)

MeSH Term

1-Phosphatidylinositol 4-Kinase
Endosomes
Gene Knockdown Techniques
Guanine Nucleotide Exchange Factors
Host Microbial Interactions
Organelles
Plant Diseases
Protein Binding
Protein Transport
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Sorting Nexins
Nicotiana
Tombusvirus
Viral Proteins
Virus Replication
rab GTP-Binding Proteins

Chemicals

Guanine Nucleotide Exchange Factors
Mon1 protein, S cerevisiae
Saccharomyces cerevisiae Proteins
Sorting Nexins
Viral Proteins
1-Phosphatidylinositol 4-Kinase
STT4 protein, S cerevisiae
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0Rab7replicationVROsvirusTBSVGTPaseyeastretromerviralhostsmallproviralRNAbiogenesisorganellesresultsfunctionscomplexproteinslipidenzymesvirusesmembranousinfectedcellsTombusvirusescellulartraffickingfactorssupportdemonstrateCIRVfacilitateendosomep33proteinrecruitmentendosomalsortingnexin-BARdeliveryphosphatidylinositoltombusvirusesformationPositive-strandinduceuniquecalledperformshownrewiremetabolicpathwaysremodelmembranesrecruitmultipleworktomatobushystuntcloselyrelatedcarnationItalianringspotusurpbuildingsurrogateplantsDepletionneededlatestronglyinhibitsinteractsrelocalizationlargeSimilardepletiondeletioneitherheterodimericGEFsguaninenucleotideexchangeinhibitedsuggestsactivatedshowfunctionp33-drivenretargetingseveralcargosincludeVps34PI3K3-kinasePI4Kα-likeStt44-kinasePsd2phosphatidylserinedecarboxylasesummarybasedpreviousfindingsproposesubversionallowsrerouteendocyticrecyclingpositive-stranddependsHoweverwellunderstoodyetUsingmodeldiscoveredcriticalInteractionleadsTBSV-drivenusurpingfacilitatingco-optedcreateoptimalmilieuopenpossibilitycontrollingactivitiestargetnewantiviralstrategiesTargetMajorCrossroadEndocyticRecyclingPathwaysviaCo-optingSmallplantreplicasetombusvirusvirus-hostinteractionsvps34

Similar Articles

Cited By