Genomic structural variants constrain and facilitate adaptation in natural populations of , the chocolate tree.

Tuomas Hämälä, Eric K Wafula, Mark J Guiltinan, Paula E Ralph, Claude W dePamphilis, Peter Tiffin
Author Information
  1. Tuomas Hämälä: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108; tuomas.hamala@gmail.com ptiffin@umn.edu. ORCID
  2. Eric K Wafula: Department of Biology, The Pennsylvania State University, University Park, PA 16802.
  3. Mark J Guiltinan: Department of Plant Sciences, The Pennsylvania State University, University Park, PA 16802. ORCID
  4. Paula E Ralph: Department of Biology, The Pennsylvania State University, University Park, PA 16802.
  5. Claude W dePamphilis: Department of Biology, The Pennsylvania State University, University Park, PA 16802.
  6. Peter Tiffin: Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108; tuomas.hamala@gmail.com ptiffin@umn.edu. ORCID

Abstract

Genomic structural variants (SVs) can play important roles in adaptation and speciation. Yet the overall fitness effects of SVs are poorly understood, partly because accurate population-level identification of SVs requires multiple high-quality genome assemblies. Here, we use 31 chromosome-scale, haplotype-resolved genome assemblies of an outcrossing, long-lived tree species that is the source of chocolate-to investigate the fitness consequences of SVs in natural populations. Among the 31 accessions, we find over 160,000 SVs, which together cover eight times more of the genome than single-nucleotide polymorphisms and short indels (125 versus 15 Mb). Our results indicate that a vast majority of these SVs are deleterious: they segregate at low frequencies and are depleted from functional regions of the genome. We show that SVs influence gene expression, which likely impairs gene function and contributes to the detrimental effects of SVs. We also provide empirical support for a theoretical prediction that SVs, particularly inversions, increase genetic load through the accumulation of deleterious nucleotide variants as a result of suppressed recombination. Despite the overall detrimental effects, we identify individual SVs bearing signatures of local adaptation, several of which are associated with genes differentially expressed between populations. Genes involved in pathogen resistance are strongly enriched among these candidates, highlighting the contribution of SVs to this important local adaptation trait. Beyond revealing empirical evidence for the evolutionary importance of SVs, these 31 de novo assemblies provide a valuable resource for genetic and breeding studies in .

Keywords

Associated Data

Dryad | 10.5061/dryad.rfj6q579s

References

  1. Nature. 2020 Dec;588(7837):277-283 [PMID: 33239791]
  2. Nat Commun. 2020 Feb 20;11(1):989 [PMID: 32080174]
  3. Cell. 2020 Jul 9;182(1):145-161.e23 [PMID: 32553272]
  4. Elife. 2018 Dec 06;7: [PMID: 30520727]
  5. Genetics. 1992 Oct;132(2):583-9 [PMID: 1427045]
  6. Nat Ecol Evol. 2017 Apr 03;1(5):119 [PMID: 28812690]
  7. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  8. Genetics. 2006 May;173(1):419-34 [PMID: 16204214]
  9. BMC Genomics. 2017 Sep 15;18(1):730 [PMID: 28915793]
  10. Nature. 2020 Aug;584(7822):602-607 [PMID: 32641831]
  11. Nat Protoc. 2016 Jan;11(1):1-9 [PMID: 26633127]
  12. Commun Biol. 2018 Oct 16;1:167 [PMID: 30345393]
  13. Genome Biol. 2019 Dec 19;20(1):291 [PMID: 31856913]
  14. Nat Plants. 2020 Aug;6(8):914-920 [PMID: 32690893]
  15. Nat Commun. 2019 Oct 25;10(1):4872 [PMID: 31653862]
  16. Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1743-51 [PMID: 23610436]
  17. PLoS Genet. 2021 Mar 4;17(3):e1009411 [PMID: 33661924]
  18. Nat Plants. 2019 Sep;5(9):965-979 [PMID: 31506640]
  19. Genome Biol. 2006;7(4):212 [PMID: 16677430]
  20. Genome Res. 2017 May;27(5):757-767 [PMID: 28381613]
  21. Genetics. 2012 Jul;191(3):883-94 [PMID: 22542971]
  22. Heredity (Edinb). 2012 Mar;108(3):285-91 [PMID: 21878986]
  23. Cell. 2021 Jun 24;184(13):3542-3558.e16 [PMID: 34051138]
  24. Genome Biol. 2013 Jun 03;14(6):r53 [PMID: 23731509]
  25. Genetics. 2017 May;206(1):345-361 [PMID: 28249985]
  26. Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):157-165 [PMID: 27235540]
  27. Bioinformatics. 2020 May 1;36(10):3242-3243 [PMID: 32096823]
  28. BMC Bioinformatics. 2011 Jun 18;12:246 [PMID: 21682921]
  29. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5241-6 [PMID: 23479633]
  30. Mol Biol Evol. 2021 Apr 13;38(4):1498-1511 [PMID: 33247723]
  31. PLoS Comput Biol. 2016 May 04;12(5):e1004842 [PMID: 27145223]
  32. Genome Biol. 2020 Feb 5;21(1):21 [PMID: 32019604]
  33. Nature. 2020 May;581(7809):444-451 [PMID: 32461652]
  34. Nature. 2020 Dec;588(7837):284-289 [PMID: 33239781]
  35. Curr Opin Plant Biol. 2003 Aug;6(4):339-42 [PMID: 12873528]
  36. Plant Physiol. 2005 Dec;139(4):1890-901 [PMID: 16306146]
  37. Trends Ecol Evol. 2001 Jul 1;16(7):351-358 [PMID: 11403867]
  38. PLoS Biol. 2010 Sep 28;8(9): [PMID: 20927411]
  39. Mol Biol Evol. 2020 Jan 1;37(1):110-123 [PMID: 31501906]
  40. Trends Ecol Evol. 2020 Jul;35(7):561-572 [PMID: 32521241]
  41. Genome Biol. 2019 Nov 20;20(1):246 [PMID: 31747936]
  42. Nat Genet. 2021 Mar;53(3):288-293 [PMID: 33495598]
  43. Science. 2007 Nov 30;318(5855):1446-9 [PMID: 18048688]
  44. Genetics. 2019 Nov;213(3):771-787 [PMID: 31527048]
  45. Nat Rev Genet. 2007 Aug;8(8):610-8 [PMID: 17637733]
  46. Science. 1936 Feb 28;83(2148):210-1 [PMID: 17796454]
  47. Nat Genet. 2011 Sep 25;43(11):1160-3 [PMID: 21946354]
  48. Cell. 2020 Jul 9;182(1):162-176.e13 [PMID: 32553274]
  49. Genome Biol. 2019 Oct 28;20(1):224 [PMID: 31661016]
  50. Nat Genet. 2017 May;49(5):692-699 [PMID: 28369037]
  51. Nat Genet. 2015 Apr;47(4):405-9 [PMID: 25751626]
  52. Nat Genet. 2016 Jan;48(1):79-83 [PMID: 26569125]
  53. Front Plant Sci. 2020 Mar 18;11:296 [PMID: 32256515]

MeSH Term

Adaptation, Physiological
Biological Evolution
Cacao
Chocolate
Chromosomes, Plant
Genome, Plant
Genomic Structural Variation
Phenotype
Plant Breeding
Trees

Word Cloud

Created with Highcharts 10.0.0SVsadaptationvariantsgenomestructuraleffectsassemblies31populationsgeneticlocalGenomicimportantoverallfitnesstreenaturalgenedetrimentalprovideempiricalloaddenovocanplayrolesspeciationYetpoorlyunderstoodpartlyaccuratepopulation-levelidentificationrequiresmultiplehigh-qualityusechromosome-scalehaplotype-resolvedoutcrossinglong-livedspeciessourcechocolate-toinvestigateconsequencesAmongaccessionsfind160000togethercovereighttimessingle-nucleotidepolymorphismsshortindels125versus15Mbresultsindicatevastmajoritydeleterious:segregatelowfrequenciesdepletedfunctionalregionsshowinfluenceexpressionlikelyimpairsfunctioncontributesalsosupporttheoreticalpredictionparticularlyinversionsincreaseaccumulationdeleteriousnucleotideresultsuppressedrecombinationDespiteidentifyindividualbearingsignaturesseveralassociatedgenesdifferentiallyexpressedGenesinvolvedpathogenresistancestronglyenrichedamongcandidateshighlightingcontributiontraitBeyondrevealingevidenceevolutionaryimportancevaluableresourcebreedingstudiesconstrainfacilitatechocolatecacaoassembly

Similar Articles

Cited By