Signaling pathway perturbation analysis for assessment of biological impact of cigarette smoke on lung cells.

Hongyu Chen, Xi Chen, Yifei Shen, Xinxin Yin, Fangjie Liu, Lu Liu, Jie Yao, Qinjie Chu, Yaqin Wang, Hongyan Qi, Michael P Timko, Weijia Fang, Longjiang Fan
Author Information
  1. Hongyu Chen: Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
  2. Xi Chen: Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
  3. Yifei Shen: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
  4. Xinxin Yin: Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
  5. Fangjie Liu: Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
  6. Lu Liu: Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
  7. Jie Yao: Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
  8. Qinjie Chu: Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
  9. Yaqin Wang: Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
  10. Hongyan Qi: Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
  11. Michael P Timko: Department of Biology and Public Health Sciences, University of Virginia, Charlottesville, VA, 22904, USA.
  12. Weijia Fang: Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China. weijiafang@zju.edu.cn.
  13. Longjiang Fan: Department of Medical Oncology, First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China. fanlj@zju.edu.cn.

Abstract

Exposure to cigarette smoke (CS) results in injury to the epithelial cells of the human respiratory tract and has been implicated as a causative factor in the development of chronic obstructive pulmonary disease and lung cancers. The application of omics-scale methodologies has improved the capacity to understand cellular signaling processes underlying response to CS exposure. We report here the development of an algorithm based on quantitative assessment of transcriptomic profiles and signaling pathway perturbation analysis (SPPA) of human bronchial epithelial cells (HBEC) exposed to the toxic components present in CS. HBEC were exposed to CS of different compositions and for different durations using an ISO3308 smoking regime and the impact of exposure was monitored in 2263 signaling pathways in the cell to generate a total effect score that reflects the quantitative degree of impact of external stimuli on the cells. These findings support the conclusion that the SPPA algorithm provides an objective, systematic, sensitive means to evaluate the biological impact of exposures to CS of different compositions making a powerful comparative tool for commercial product evaluation and potentially for other known or potentially toxic environmental smoke substances.

References

  1. J Contemp Dent Pract. 2019 Jan 1;20(1):101-107 [PMID: 31058621]
  2. J Vis Exp. 2015 Feb 12;(96): [PMID: 25741927]
  3. Biomed Pharmacother. 2016 Dec;84:714-721 [PMID: 27710895]
  4. Regul Toxicol Pharmacol. 2019 Apr;103:314-324 [PMID: 30721718]
  5. Curr Allergy Asthma Rep. 2017 Oct 5;17(11):79 [PMID: 28983782]
  6. Rocz Panstw Zakl Hig. 2009;60(4):299-310 [PMID: 20361554]
  7. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  8. JAMA Psychiatry. 2017 Oct 1;74(10):1056-1064 [PMID: 28832876]
  9. Int J Biol Sci. 2013 Jun 28;9(6):613-23 [PMID: 23847443]
  10. Regul Toxicol Pharmacol. 2013 Mar;65(2):196-200 [PMID: 23220485]
  11. Sci Rep. 2018 Feb 5;8(1):1145 [PMID: 29402904]
  12. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  13. Regul Toxicol Pharmacol. 2016 Nov 30;81 Suppl 2:S27-S47 [PMID: 27720919]
  14. Toxicol Appl Pharmacol. 2013 Nov 1;272(3):863-78 [PMID: 23933166]
  15. BMC Genomics. 2019 Jan 9;20(1):22 [PMID: 30626320]
  16. Toxicol Sci. 2017 Mar 1;156(1):14-24 [PMID: 28115645]
  17. Reprod Toxicol. 2017 Sep;72:164-181 [PMID: 28684319]
  18. Toxicol In Vitro. 2017 Apr;40:144-152 [PMID: 28062357]
  19. Oncotarget. 2017 Nov 25;8(70):115128-115139 [PMID: 29383147]
  20. PLoS One. 2012;7(2):e30619 [PMID: 22312429]
  21. Toxicol In Vitro. 2019 Feb;54:251-262 [PMID: 30291989]
  22. Tob Control. 2014 Mar;23(2):133-9 [PMID: 23467656]
  23. Bioinform Biol Insights. 2015 Mar 09;9:19-35 [PMID: 25788831]
  24. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  25. COPD. 2016 Jun;13(3):372-9 [PMID: 26683097]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. Arch Oral Biol. 2014 Feb;59(2):142-8 [PMID: 24370185]
  28. Regul Toxicol Pharmacol. 2005 Apr;41(3):185-227 [PMID: 15748796]
  29. Database (Oxford). 2015 Apr 17;2015:bav030 [PMID: 25887162]
  30. Future Sci OA. 2019 May 03;5(5):FSO394 [PMID: 31205749]
  31. Sci Rep. 2017 Apr 18;7(1):888 [PMID: 28420881]
  32. Toxicol Rep. 2019 Feb 25;6:222-231 [PMID: 30886823]
  33. Chem Cent J. 2011 Aug 26;5:50 [PMID: 21867559]
  34. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  35. Environ Sci Technol. 2010 Jun 1;44(11):4328-33 [PMID: 20459122]
  36. Regul Toxicol Pharmacol. 2014 Oct;70(1):138-48 [PMID: 24973503]
  37. J Heart Lung Transplant. 2019 Jan;38(1):51-58 [PMID: 30352779]
  38. Toxicol In Vitro. 2016 Oct;36:105-113 [PMID: 27470133]
  39. Curr Drug Saf. 2018;13(2):92-101 [PMID: 29485005]
  40. Chemosphere. 2017 Dec;188:49-59 [PMID: 28869846]
  41. Sci Rep. 2016 Apr 04;6:23984 [PMID: 27041137]
  42. Arch Toxicol. 2020 Jan;94(1):1-58 [PMID: 31848664]
  43. Database (Oxford). 2015 Jun 17;2015:bav057 [PMID: 26200752]
  44. Toxicol In Vitro. 2017 Mar;39:29-51 [PMID: 27865774]
  45. Regul Toxicol Pharmacol. 2008 Jun;51(1):1-30 [PMID: 18433960]
  46. BMC Bioinformatics. 2019 Sep 3;20(1):451 [PMID: 31481014]
  47. Future Oncol. 2019 Oct 31;: [PMID: 31668090]
  48. Toxicol In Vitro. 2015 Dec;29(8):2102-15 [PMID: 26277032]
  49. Cell. 2018 Apr 5;173(2):321-337.e10 [PMID: 29625050]
  50. J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):51-138 [PMID: 20574894]

MeSH Term

Cell Line
Epithelial Cells
Humans
Lung
Signal Transduction
Smoking

Word Cloud

Created with Highcharts 10.0.0CScellsimpactsmokesignalingdifferentcigaretteepithelialhumandevelopmentlungexposurealgorithmquantitativeassessmentpathwayperturbationanalysisSPPAHBECexposedtoxiccompositionsbiologicalpotentiallyExposureresultsinjuryrespiratorytractimplicatedcausativefactorchronicobstructivepulmonarydiseasecancersapplicationomics-scalemethodologiesimprovedcapacityunderstandcellularprocessesunderlyingresponsereportbasedtranscriptomicprofilesbronchialcomponentspresentdurationsusingISO3308smokingregimemonitored2263pathwayscellgeneratetotaleffectscorereflectsdegreeexternalstimulifindingssupportconclusionprovidesobjectivesystematicsensitivemeansevaluateexposuresmakingpowerfulcomparativetoolcommercialproductevaluationknownenvironmentalsubstancesSignaling

Similar Articles

Cited By