Droplet tilings for rapid exploration of spatially constrained many-body systems.

Anton Molina, Shailabh Kumar, Stefan Karpitschka, Manu Prakash
Author Information
  1. Anton Molina: Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305. ORCID
  2. Shailabh Kumar: Department of Bioengineering, Stanford University, Stanford, CA 94305. ORCID
  3. Stefan Karpitschka: Department of Bioengineering, Stanford University, Stanford, CA 94305.
  4. Manu Prakash: Department of Bioengineering, Stanford University, Stanford, CA 94305 manup@stanford.edu. ORCID

Abstract

Geometry in materials is a key concept which can determine material behavior in ordering, frustration, and fragmentation. More specifically, the behavior of interacting degrees of freedom subject to arbitrary geometric constraints has the potential to be used for engineering materials with exotic phase behavior. While advances in lithography have allowed for an experimental exploration of geometry on ordering that has no precedent in nature, many of these methods are low throughput or the underlying dynamics remain difficult to observe directly. Here, we introduce an experimental system that enables the study of interacting many-body dynamics by exploiting the physics of multidroplet evaporation subject to two-dimensional spatial constraints. We find that a high-energy initial state of this system settles into frustrated, metastable states with relaxation on two timescales. We understand this process using a minimal dynamical model that simulates the overdamped dynamics of motile droplets by identifying the force exerted on a given droplet as being proportional to the two-dimensional vapor gradients established by its neighbors. Finally, we demonstrate the flexibility of this platform by presenting experimental realizations of droplet-lattice systems representing different spin degrees of freedom and lattice geometries. Our platform enables a rapid and low-cost means to directly visualize dynamics associated with complex many-body systems interacting via long-range interactions. More generally, this platform opens up the rich design space between geometry and interactions for rapid exploration with minimal resources.

Keywords

References

  1. Nat Chem. 2020 Dec;12(12):1136-1142 [PMID: 33199888]
  2. Phys Rev Lett. 2013 Aug 2;111(5):057204 [PMID: 23952441]
  3. Phys Rev Lett. 2005 Dec 9;95(24):240604 [PMID: 16384365]
  4. J Biol Chem. 1997 Jan 10;272(2):701-4 [PMID: 8995351]
  5. Phys Rev Lett. 2012 Jan 20;108(3):038303 [PMID: 22400792]
  6. Nat Nanotechnol. 2014 Jul;9(7):514-9 [PMID: 24908258]
  7. Electrophoresis. 2009 May;30(9):1497-500 [PMID: 19340829]
  8. J Chem Phys. 2013 Nov 21;139(19):194503 [PMID: 24320335]
  9. Soft Matter. 2018 Sep 26;14(37):7724-7730 [PMID: 30191241]
  10. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jul;62(1 Pt B):756-65 [PMID: 11088531]
  11. Phys Rev Lett. 2002 Jun 17;88(24):248302 [PMID: 12059336]
  12. Nature. 2015 Mar 26;519(7544):446-50 [PMID: 25762146]
  13. Phys Rev Lett. 2019 Mar 22;122(11):114501 [PMID: 30951342]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062316 [PMID: 25019785]
  15. Science. 2013 May 3;340(6132):583-7 [PMID: 23641112]
  16. J Chem Theory Comput. 2016 Dec 13;12(12):5860-5867 [PMID: 27779845]
  17. Nat Mater. 2018 Dec;17(12):1076-1080 [PMID: 30374201]
  18. Philos Trans A Math Phys Eng Sci. 2018 Mar 13;376(2115): [PMID: 29431686]
  19. Phys Rev E. 2020 Apr;101(4-1):043101 [PMID: 32422850]
  20. Phys Rev Lett. 2012 Dec 21;109(25):257203 [PMID: 23368492]
  21. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7214-8 [PMID: 20406907]
  22. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Nov;52(5):5660-5663 [PMID: 9964065]
  23. Nat Mater. 2020 Jul;19(7):725-731 [PMID: 32203457]
  24. Nature. 2006 Jan 19;439(7074):303-6 [PMID: 16421565]
  25. Langmuir. 2017 May 16;33(19):4682-4687 [PMID: 28421771]

Grants

  1. /Howard Hughes Medical Institute

Word Cloud

Created with Highcharts 10.0.0dynamicsbehaviorinteractingexperimentalexplorationmany-bodyplatformsystemsrapidmaterialsorderingfrustrationdegreesfreedomsubjectgeometricconstraintsgeometrydirectlysystemenablesevaporationtwo-dimensionalminimaldropletsinteractionsGeometrykeyconceptcandeterminematerialfragmentationspecificallyarbitrarypotentialusedengineeringexoticphaseadvanceslithographyallowedprecedentnaturemanymethodslowthroughputunderlyingremaindifficultobserveintroducestudyexploitingphysicsmultidropletspatialfindhigh-energyinitialstatesettlesfrustratedmetastablestatesrelaxationtwotimescalesunderstandprocessusingdynamicalmodelsimulatesoverdampedmotileidentifyingforceexertedgivendropletproportionalvaporgradientsestablishedneighborsFinallydemonstrateflexibilitypresentingrealizationsdroplet-latticerepresentingdifferentspinlatticegeometrieslow-costmeansvisualizeassociatedcomplexvialong-rangegenerallyopensrichdesignspaceresourcesDroplettilingsspatiallyconstrainedmetastabilityself-assembly

Similar Articles

Cited By