CTRP1 Attenuates Cerebral Ischemia/Reperfusion Injury via the PERK Signaling Pathway.
Huizhi Fei, Pu Xiang, Wen Luo, Xiaodan Tan, Chao Gu, Maozhu Liu, Mengyuan Chen, Qiong Wang, Junqing Yang
Author Information
Huizhi Fei: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Pu Xiang: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Wen Luo: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Xiaodan Tan: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Chao Gu: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Maozhu Liu: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Mengyuan Chen: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Qiong Wang: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
Junqing Yang: Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
中文译文
English
Cerebral ischemic stroke is one of the leading causes of death worldwide. Previous studies have shown that circulating levels of CTRP1 are upregulated in patients with acute ischemic stroke. However, the function of CTRP1 in neurons remains unclear. The purpose of this study was to explore the role of CTRP1 in cerebral ischemia reperfusion injury (CIRI) and to elucidate the underlying mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral ischemic stroke and , respectively. CTRP1 overexpression lentivirus and CTRP1 siRNA were used to observe the effect of CTRP1 expression, and the PERK selective activator CCT020312 was used to activate the PERK signaling pathway. We found the decreased expression of CTRP1 in the cortex of MCAO/R-treated rats and OGD/R-treated primary cortical neurons. CTRP1 overexpression attenuated CIRI, accompanied by the reduction of apoptosis and suppression of the PERK signaling pathway. Interference with CTRP1 expression aggravated apoptotic activity and increased the expression of proteins involved in the PERK signaling pathway. Moreover, activating the PERK signaling pathway abolished the protective effects of CTRP1 on neuron injury induced by CIRI and . In conclusion, CTRP1 protects against CIRI by reducing apoptosis and endoplasmic reticulum stress (ERS) through inhibiting the PERK-dependent signaling pathway, suggesting that CTRP1 plays a crucial role in the pathogenesis of CIRI.
Cell Death Dis. 2019 Jun 26;10(7):504
[PMID: 31243264 ]
Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E678-E697
[PMID: 27555298 ]
Eur Heart J. 2016 Jun 07;37(22):1762-71
[PMID: 26705391 ]
Stroke. 1989 Jan;20(1):84-91
[PMID: 2643202 ]
J Virol. 2019 Aug 13;93(17):
[PMID: 31189710 ]
Stroke. 2019 Jan;50(1):34-37
[PMID: 30566036 ]
Life Sci. 2018 Aug 15;207:492-498
[PMID: 29964055 ]
Adv Exp Med Biol. 2012;942:157-83
[PMID: 22399422 ]
PLoS One. 2016 Sep 14;11(9):e0162766
[PMID: 27627766 ]
J Ethnopharmacol. 2020 May 10;253:112614
[PMID: 32007630 ]
Behav Brain Res. 2019 Sep 16;370:111952
[PMID: 31103751 ]
Neuropharmacology. 2018 May 15;134(Pt B):169-177
[PMID: 28923277 ]
Stroke. 2020 May;51(5):1570-1577
[PMID: 32212900 ]
Front Immunol. 2019 Jan 04;9:3083
[PMID: 30662442 ]
Nat Rev Mol Cell Biol. 2012 Jan 18;13(2):89-102
[PMID: 22251901 ]
Front Physiol. 2020 Apr 08;11:267
[PMID: 32322217 ]
Cell Death Dis. 2017 Oct 5;8(10):e3080
[PMID: 28981095 ]
Neurol Res. 2020 Sep;42(9):730-738
[PMID: 32588767 ]
Am J Med Sci. 2015 Feb;349(2):130-6
[PMID: 25635749 ]
Nutr Metab Cardiovasc Dis. 2021 Jan 4;31(1):333-343
[PMID: 33500109 ]
FEBS J. 2019 Jan;286(2):342-355
[PMID: 29476642 ]
Cardiovasc Ther. 2019 Jun 2;2019:4183781
[PMID: 31772610 ]
Cell Physiol Biochem. 2017;42(5):2130-2143
[PMID: 28810263 ]
Clin Kidney J. 2018 Oct 11;12(3):420-426
[PMID: 31198543 ]
PLoS One. 2014 May 14;9(5):e94478
[PMID: 24827430 ]
J Zhejiang Univ Sci B. 2017 Jan.;18(1):1-14
[PMID: 28070992 ]
Exp Neurol. 2018 Apr;302:136-144
[PMID: 29337146 ]
Mol Cell. 2003 Mar;11(3):619-33
[PMID: 12667446 ]
Int J Cardiol. 2020 May 15;307:159-163
[PMID: 32081468 ]
Brain Res. 2018 Dec 15;1701:246-254
[PMID: 30201260 ]
Atherosclerosis. 2016 Jul;250:38-45
[PMID: 27175610 ]
Mol Cell Biochem. 2012 May;364(1-2):115-29
[PMID: 22246806 ]
J Nutr Biochem. 2016 Jan;27:43-52
[PMID: 26456564 ]
FASEB J. 2016 Mar;30(3):1065-75
[PMID: 26578687 ]
PLoS One. 2012;7(1):e28568
[PMID: 22253692 ]
Mol Cell. 2000 Nov;6(5):1099-108
[PMID: 11106749 ]
J Cereb Blood Flow Metab. 2012 Sep;32(9):1677-98
[PMID: 22739623 ]
J Biol Chem. 2018 Apr 6;293(14):5134-5149
[PMID: 29444822 ]
Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10302-7
[PMID: 15231994 ]
Neurotox Res. 2010 Feb;17(2):189-202
[PMID: 19763736 ]
Ann N Y Acad Sci. 2006 Nov;1086:54-65
[PMID: 17185505 ]
Endocr J. 2017 Aug 30;64(8):787-796
[PMID: 28674284 ]
J Biol Chem. 2013 Nov 22;288(47):33824-33836
[PMID: 24114838 ]
Biochem Pharmacol. 2020 Jul;177:113983
[PMID: 32311346 ]
FASEB J. 2008 May;22(5):1502-11
[PMID: 18171693 ]
FEBS Lett. 2006 Jul 10;580(16):3953-60
[PMID: 16806199 ]
Stroke. 2006 Jan;37(1):263-6
[PMID: 16339467 ]
Int J Cardiol. 2014 Jun 1;174(1):203-6
[PMID: 24746545 ]
Eur Heart J. 2016 Jun 7;37(22):1772-4
[PMID: 26843273 ]
Semin Neurol. 2018 Apr;38(2):208-211
[PMID: 29791947 ]
EMBO Mol Med. 2017 Mar;9(3):371-384
[PMID: 28148553 ]
Pediatr Res. 2018 May;83(5):999-1003
[PMID: 29360808 ]
Acta Biochim Biophys Sin (Shanghai). 2014 Aug;46(8):629-40
[PMID: 25016584 ]
Science. 2011 Nov 25;334(6059):1081-6
[PMID: 22116877 ]
Mol Brain. 2016 Oct 1;9(1):87
[PMID: 27716400 ]
Eur J Pharmacol. 2018 Jan 5;818:1-9
[PMID: 29031902 ]
Brain Behav Immun. 2011 Feb;25(2):260-9
[PMID: 20869431 ]
Eur Rev Med Pharmacol Sci. 2017 Dec;21(24):5736-5744
[PMID: 29272010 ]
J Biol Chem. 2003 Sep 26;278(39):37375-85
[PMID: 12871976 ]
Circ Res. 2013 Aug 2;113(4):428-38
[PMID: 23908330 ]
Curr Opin Investig Drugs. 2009 Jul;10(7):644-54
[PMID: 19579170 ]
BMC Cardiovasc Disord. 2016 May 11;16:92
[PMID: 27169633 ]
Life Sci. 2020 Sep 1;256:117992
[PMID: 32569781 ]
Front Mol Neurosci. 2017 Jan 23;10:1
[PMID: 28167898 ]
Neurosci Bull. 2020 Feb;36(2):134-142
[PMID: 31309426 ]
Cell Physiol Biochem. 2014;33(6):1975-87
[PMID: 25012492 ]
Biomed Res Int. 2019 Apr 30;2019:2582416
[PMID: 31183364 ]
Front Cell Neurosci. 2019 Mar 15;13:101
[PMID: 30930751 ]
J Clin Med. 2019 May 11;8(5):
[PMID: 31083558 ]
FASEB J. 2020 Feb;34(2):2657-2676
[PMID: 31908037 ]
Prog Neurobiol. 2014 Jan;112:50-69
[PMID: 24157661 ]
Biochim Biophys Acta. 2013 Dec;1833(12):3460-3470
[PMID: 23850759 ]
Annu Rev Cell Dev Biol. 2002;18:575-99
[PMID: 12142265 ]
Cell Death Differ. 2004 Apr;11(4):381-9
[PMID: 14685163 ]
J Stroke Cerebrovasc Dis. 2019 Feb;28(2):305-310
[PMID: 30391327 ]
Eur J Clin Invest. 2017 Mar;47(3):203-212
[PMID: 27930815 ]
Biochem J. 2008 Dec 1;416(2):e7-9
[PMID: 18990088 ]
Int J Endocrinol. 2016;2016:5479627
[PMID: 27313611 ]
Chem Res Toxicol. 2016 Sep 19;29(9):1510-8
[PMID: 27484784 ]
Cell Signal. 2014 Jul;26(7):1567-75
[PMID: 24686080 ]
Compr Physiol. 2016 Dec 6;7(1):113-170
[PMID: 28135002 ]
Curr Med Sci. 2020 Feb;40(1):48-54
[PMID: 32166664 ]
Free Radic Biol Med. 2018 Jun;121:215-230
[PMID: 29733904 ]
Circulation. 2021 Feb 23;143(8):e254-e743
[PMID: 33501848 ]
Free Radic Biol Med. 2020 May 20;152:810-820
[PMID: 31991227 ]
Br J Neurosurg. 2019 Oct;33(5):504-507
[PMID: 30892950 ]
Cell Death Differ. 2012 Nov;19(11):1880-91
[PMID: 22705852 ]
Front Pharmacol. 2020 May 19;11:737
[PMID: 32508655 ]
J Neurochem. 2005 Sep;94(5):1235-42
[PMID: 16000157 ]
Mol Aspects Med. 2018 Oct;63:18-29
[PMID: 29559224 ]
J Biol Chem. 2012 Jan 6;287(2):1576-87
[PMID: 22086915 ]