Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the Phylogenetic Lineage Associated with Rugose-Ornamented Spores.

Yoon-Hee Chung, Hiyoung Kim, Chang-Hun Ji, Hyun-Woo Je, Dongho Lee, Sang Hee Shim, Hwang-Soo Joo, Hahk-Soo Kang
Author Information
  1. Yoon-Hee Chung: Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea.
  2. Hiyoung Kim: Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea.
  3. Chang-Hun Ji: Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea.
  4. Hyun-Woo Je: Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea.
  5. Dongho Lee: Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
  6. Sang Hee Shim: Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea.
  7. Hwang-Soo Joo: College of Science and Technology, Duksung Women's University, Seoul, South Korea.
  8. Hahk-Soo Kang: Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea.

Abstract

The genus is one of the richest sources of secondary metabolite biosynthetic gene clusters (BGCs). Sequencing of a large number of genomes has provided evidence that this well-known bacterial genus still harbors a large number of cryptic BGCs, and their metabolites are yet to be discovered. When taking a gene-first approach for new natural product discovery, BGC prioritization would be the most crucial step for the discovery of novel chemotypes. We hypothesized that strains with a greater number of BGCs would also contain a greater number of silent unique BGCs due to the presence of complex regulatory systems. Based on this hypothesis, we employed a comparative genomics approach to identify a specific phylogenetic lineage with the highest and yet-uncharacterized biosynthetic potential. A comparison of BGC abundance and genome size across 158 phylogenetically diverse type strains identified that members of the phylogenetic group characterized by the formation of rugose-ornamented spores possess the greatest number of BGCs (average, 50 BGCs) and also the largest genomes (average, 11.5 Mb). The study of genetic and biosynthetic diversities using comparative genomics of 11 sequenced genomes and a genetic similarity network analysis of BGCs suggested that members of this group carry a large number of unique BGCs, the majority of which are cryptic and not associated with any known natural product. We believe that members of this phylogenetic group possess a remarkable biosynthetic potential and thus would be a good target for a metabolite characterization study that could lead to the discovery of novel chemotypes. It is now well recognized that members of the genus still harbor a large number of cryptic BGCs in their genomes, which are mostly silent under laboratory culture conditions. Activation of transcriptionally silent BGCs is technically challenging and thus forms a bottleneck when taking a gene-first approach for the discovery of new natural products. Thus, it is important to focus activation efforts on strains with BGCs that have the potential to produce novel metabolites. The clade-level analysis of biosynthetic diversity could provide insights into the relationship between phylogenetic lineage and biosynthetic diversity. By exploring BGC abundance in relation to phylogeny, we identified a specific monophyletic lineage associated with the highest BGC abundance. Then, using a combined analysis of comparative genomics and a genetic network, we demonstrated that members of this lineage are genetically and biosynthetically diverse, contain a large number of cryptic BGCs with novel genotypes, and thus would be a good target for metabolite characterization studies.

Keywords

References

  1. J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1381-1400 [PMID: 31177350]
  2. Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5 [PMID: 27095192]
  3. Genome Announc. 2013 Aug 08;1(4): [PMID: 23929477]
  4. Nat Chem Biol. 2017 Apr 10;: [PMID: 28398287]
  5. Nat Chem Biol. 2015 Sep;11(9):625-31 [PMID: 26284661]
  6. Pac Symp Biocomput. 2002;:115-26 [PMID: 11928468]
  7. Sci Rep. 2016 Apr 13;6:24373 [PMID: 27071527]
  8. Angew Chem Int Ed Engl. 2017 May 8;56(20):5503-5506 [PMID: 28418225]
  9. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 [PMID: 10592175]
  10. ACS Synth Biol. 2020 Jan 17;9(1):175-180 [PMID: 31800222]
  11. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  12. Nat Chem Biol. 2014 Nov;10(11):963-8 [PMID: 25262415]
  13. Nucleic Acids Res. 2020 Jan 8;48(D1):D454-D458 [PMID: 31612915]
  14. J Antibiot (Tokyo). 1975 Oct;28(10):727-32 [PMID: 1102509]
  15. J Nat Prod. 2005 Apr;68(4):493-6 [PMID: 15844935]
  16. Nat Chem Biol. 2020 Jan;16(1):60-68 [PMID: 31768033]
  17. Nat Chem Biol. 2019 Feb;15(2):161-168 [PMID: 30617293]
  18. Appl Microbiol Biotechnol. 2018 Mar;102(5):2225-2234 [PMID: 29349495]
  19. Brief Bioinform. 2019 Jul 19;20(4):1103-1113 [PMID: 29112695]
  20. Antonie Van Leeuwenhoek. 2007 Aug;92(2):173-99 [PMID: 17407000]
  21. Nat Prod Rep. 2021 Mar 4;38(2):301-306 [PMID: 33533785]
  22. J Ind Microbiol Biotechnol. 2017 Feb;44(2):285-293 [PMID: 27885438]
  23. J Biol Chem. 2010 Sep 3;285(36):27501-8 [PMID: 20522545]
  24. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 [PMID: 15980510]
  25. Comput Struct Biotechnol J. 2020 Jun 21;18:1548-1556 [PMID: 32637051]
  26. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  27. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  28. Nat Prod Rep. 2012 Feb;29(2):243-63 [PMID: 22193711]
  29. Antonie Van Leeuwenhoek. 2012 Jan;101(1):73-104 [PMID: 22045019]
  30. Antonie Van Leeuwenhoek. 2000 Dec;78(3-4):353-66 [PMID: 11386358]
  31. BMC Genomics. 2016 Mar 05;17:193 [PMID: 26945881]
  32. J Nat Prod. 2020 Sep 25;83(9):2696-2705 [PMID: 32869646]
  33. Chem Biol. 2007 Jun;14(6):703-14 [PMID: 17584617]
  34. Cell. 2014 Jul 17;158(2):412-421 [PMID: 25036635]
  35. J Antibiot (Tokyo). 2012 Aug;65(8):385-95 [PMID: 22511224]
  36. Microb Biotechnol. 2019 Sep;12(5):828-844 [PMID: 30834674]
  37. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  38. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  39. Nat Chem Biol. 2019 Feb;15(2):111-114 [PMID: 30598544]
  40. Microbiol Mol Biol Rev. 2001 Jun;65(2):232-60 ; second page, table of contents [PMID: 11381101]
  41. Chembiochem. 2014 Jan 3;15(1):94-102 [PMID: 24501776]
  42. J Nat Prod. 2018 Jan 26;81(1):178-187 [PMID: 29308897]
  43. Curr Opin Biotechnol. 2021 Jun;69:118-127 [PMID: 33445072]
  44. Nat Prod Rep. 2019 Sep 1;36(9):1313-1332 [PMID: 31197291]
  45. Molecules. 2019 Oct 25;24(21): [PMID: 31731388]
  46. ACS Synth Biol. 2018 Aug 17;7(8):1946-1955 [PMID: 29966097]
  47. Trends Genet. 1995 Jun;11(6):217-8 [PMID: 7638902]
  48. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]

Grants

  1. NRF-2018R1C1B3001028/National Research Foundation of Korea (NRF)

Word Cloud

Created with Highcharts 10.0.0BGCsnumberbiosyntheticlargemembersgenomescrypticdiscoveryBGCnovelcomparativegenomicsphylogeneticlineagegenusmetabolitemetabolitesapproachnaturalstrainssilentpotentialabundancegroupgeneticanalysisthussecondarygeneclustersstilltakinggene-firstnewproductchemotypesgreateralsocontainuniquespecifichighestgenomediverseidentifiedpossessaverage11studyusingnetworkassociatedgoodtargetcharacterizationdiversityonerichestsourcesSequencingprovidedevidencewell-knownbacterialharborsyetdiscoveredprioritizationcrucialstephypothesizedduepresencecomplexregulatorysystemsBasedhypothesisemployedidentifyyet-uncharacterizedcomparisonsizeacross158phylogeneticallytypecharacterizedformationrugose-ornamentedsporesgreatest50largest5 MbdiversitiessequencedsimilaritysuggestedcarrymajorityknownbelieveremarkableleadnowwellrecognizedharbormostlylaboratorycultureconditionsActivationtranscriptionallytechnicallychallengingformsbottleneckproductsThusimportantfocusactivationeffortsproduceclade-levelprovideinsightsrelationshipexploringrelationphylogenymonophyleticcombineddemonstratedgeneticallybiosyntheticallygenotypesstudiesComparativeGenomicsRevealsRemarkableBiosyntheticPotentialPhylogeneticLineageAssociatedRugose-OrnamentedSporesmining

Similar Articles

Cited By