Topological signal processing and inference of event-related potential response.

Yuan Wang, Roozbeh Behroozmand, Lorelei Phillip Johnson, Leonardo Bonilha, Julius Fridriksson
Author Information
  1. Yuan Wang: Department of Epidemiology and Biostatistics, University of South Carolina, USA. Electronic address: wang578@mailbox.sc.edu.
  2. Roozbeh Behroozmand: Department of Communication Sciences and Disorders, University of South Carolina, USA.
  3. Lorelei Phillip Johnson: Department of Communication Sciences and Disorders, University of South Carolina, USA.
  4. Leonardo Bonilha: Department of Neurology, Medical University of South Carolina, USA.
  5. Julius Fridriksson: Department of Communication Sciences and Disorders, University of South Carolina, USA.

Abstract

BACKGROUND: Topological signal processing is a novel approach for decoding multiscale features of signals recorded through electroencephalography (EEG) based on topological data analysis (TDA). New method: We establish stability properties of the TDA descriptor persistence landscape (PL) in event-related potential (ERP) across multi-trial EEG signals, state algorithms for computing PL, and propose an exact inference framework on persistence and PLs.
RESULTS: We apply the topological signal processing and inference framework to compare ERPs between individuals with post-stroke aphasia and healthy controls under a speech altered auditory feedback (AAF) paradigm. Results show significant PL difference in the ERP response of aphasic individuals and healthy controls over the parietal-occipital and occipital regions with respect to speech onset, and no significant PL difference in any regions with respect to the two pitch-shift stimuli. Comparison with existing methods: In comparison, spatial patterns of difference between aphasic individuals and healthy controls by persistence, local variance, and spectral powers are much more diffuse than the PL patterns. In simulation results, the exact test on persistence and PLs has more robust performance than the baseline tests on local variance and spectral powers.
CONCLUSIONS: Persistence features provide a more robust EEG marker than local variance, and spectral powers. It could be a potentially powerful tool for comparing electrophysiological correlates in neurological disorders.

Keywords

References

  1. Brain Lang. 2011 Dec;119(3):119-28 [PMID: 21256582]
  2. J Neurosci. 2010 Aug 18;30(33):11057-61 [PMID: 20720112]
  3. Cerebrovasc Dis. 2004;17(1):35-43 [PMID: 14530636]
  4. J Neurophysiol. 2015 Apr 1;113(7):2471-9 [PMID: 25632078]
  5. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2653-8 [PMID: 23345447]
  6. Cereb Cortex. 2015 Dec;25(12):4689-96 [PMID: 25016386]
  7. Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1421-8 [PMID: 9368930]
  8. Neuroimage. 2018 Jan 15;165:102-111 [PMID: 29024793]
  9. Cognition. 2004 May-Jun;92(1-2):67-99 [PMID: 15037127]
  10. Cortex. 2018 Feb;99:55-68 [PMID: 29169049]
  11. J Neurol Sci. 2015 May 15;352(1-2):12-8 [PMID: 25888529]
  12. Exp Brain Res. 2018 Jul;236(7):1881-1895 [PMID: 29696312]
  13. Nat Rev Neurosci. 2007 May;8(5):393-402 [PMID: 17431404]
  14. J Neuroeng Rehabil. 2014 Jan 28;11:9 [PMID: 24468185]
  15. Neuroimage. 2019 Oct 15;200:437-449 [PMID: 31276797]
  16. Brain. 2013 Nov;136(Pt 11):3451-60 [PMID: 24131592]
  17. Trends Cogn Sci. 2000 Apr;4(4):131-138 [PMID: 10740277]
  18. Clin Neurophysiol. 2009 Jul;120(7):1303-12 [PMID: 19520602]
  19. J Neurosci. 2013 Jul 17;33(29):12090-8 [PMID: 23864694]
  20. Ann Appl Stat. 2018 Sep;12(3):1506-1534 [PMID: 30220953]
  21. Brain. 1977 Mar;100 Pt 1:1-18 [PMID: 861709]
  22. Hum Brain Mapp. 2016 Dec;37(12):4248-4261 [PMID: 27400999]
  23. Brain. 2000 Jun;123 ( Pt 6):1075-91 [PMID: 10825348]
  24. J Neurophysiol. 2009 May;101(5):2725-32 [PMID: 19225172]
  25. J Cogn Neurosci. 2003 Jul 1;15(5):673-82 [PMID: 12965041]

Grants

  1. P50 DC014664/NIDCD NIH HHS
  2. K01 DC015831/NIDCD NIH HHS
  3. R01 MH118514/NIMH NIH HHS
  4. R01 DC018523/NIDCD NIH HHS
  5. R21 DC014170/NIDCD NIH HHS
  6. R01 DC014021/NIDCD NIH HHS
  7. T32 DC014435/NIDCD NIH HHS
  8. R01 NS110347/NINDS NIH HHS

MeSH Term

Attention
Electroencephalography
Evoked Potentials
Humans
Signal Processing, Computer-Assisted
Speech

Word Cloud

Created with Highcharts 10.0.0PLTopologicalsignalprocessingpersistenceinferenceEEGindividualshealthycontrolsdifferencelocalvariancespectralpowersPersistencefeaturessignalstopologicalTDAlandscapeevent-relatedpotentialERPframeworkPLsspeechsignificantresponseaphasicregionsrespectpatternsrobustBACKGROUND:novelapproachdecodingmultiscalerecordedelectroencephalographybaseddataanalysisNewmethod:establishstabilitypropertiesdescriptoracrossmulti-trialstatealgorithmscomputingproposeexactRESULTS:applycompareERPspost-strokeaphasiaalteredauditoryfeedbackAAFparadigmResultsshowparietal-occipitaloccipitalonsettwopitch-shiftstimuliComparisonexistingmethods:comparisonspatialmuchdiffusesimulationresultsexact testperformancebaselinetestsCONCLUSIONS:providemarkerpotentiallypowerfultoolcomparingelectrophysiologicalcorrelatesneurologicaldisordersPersistenthomology

Similar Articles

Cited By