Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach.

Lenin González-Paz, María Laura Hurtado-León, Carla Lossada, Francelys V Fernández-Materán, Joan Vera-Villalobos, Marcos Loroño, J L Paz, Laura Jeffreys, Ysaias J Alvarado
Author Information
  1. Lenin González-Paz: Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Venezuela. Electronic address: lgonzalezpaz@gmail.com.
  2. María Laura Hurtado-León: Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela.
  3. Carla Lossada: Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
  4. Francelys V Fernández-Materán: Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela.
  5. Joan Vera-Villalobos: Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador.
  6. Marcos Loroño: Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  7. J L Paz: Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  8. Laura Jeffreys: Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
  9. Ysaias J Alvarado: Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Venezuela. Electronic address: alvaradoysaias@gmail.com.

Abstract

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.

Keywords

References

  1. J Infect Public Health. 2021 May;14(5):601-610 [PMID: 33848890]
  2. J Chem Inf Model. 2020 Feb 24;60(2):667-683 [PMID: 31922754]
  3. ACS Med Chem Lett. 2018 Oct 04;9(11):1134-1139 [PMID: 30429958]
  4. J Antibiot (Tokyo). 2020 Sep;73(9):593-602 [PMID: 32533071]
  5. Antiviral Res. 2020 Jun;178:104787 [PMID: 32251768]
  6. EPMA J. 2020 May 28;11(2):289-309 [PMID: 32549918]
  7. Drug Metab Dispos. 1982 May-Jun;10(3):268-74 [PMID: 6125361]
  8. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W441-5 [PMID: 19395593]
  9. BMC Bioinformatics. 2010 Jun 02;11:298 [PMID: 20525216]
  10. J Biomol Struct Dyn. 2022 Apr;40(6):2444-2459 [PMID: 33228481]
  11. J Biomol Struct Dyn. 2021 Sep;39(15):5735-5755 [PMID: 32679006]
  12. Drug Dev Res. 2021 May;82(3):374-392 [PMID: 33170521]
  13. Curr Pharm Biotechnol. 2012 May;13(6):853-65 [PMID: 22039784]
  14. J Mol Struct. 2021 Jan 15;1224:129178 [PMID: 32904625]
  15. Mol Biol (Mosk). 2013 Jul-Aug;47(4):681-8 [PMID: 24466758]
  16. Int J Mol Sci. 2019 Jul 20;20(14): [PMID: 31330841]
  17. Cancer Res. 2017 Nov 1;77(21):e55-e57 [PMID: 29092940]
  18. Biophys J. 2018 Feb 27;114(4):856-869 [PMID: 29490246]
  19. BMC Struct Biol. 2013;13 Suppl 1:S11 [PMID: 24564952]
  20. Drug Metab Dispos. 1986 Sep-Oct;14(5):590-600 [PMID: 2876867]
  21. Nucleic Acids Res. 2020 Jul 2;48(W1):W94-W103 [PMID: 32427333]
  22. Trends Parasitol. 2017 Jun;33(6):463-472 [PMID: 28285851]
  23. J Biomol Struct Dyn. 2021 Oct;39(16):6195-6217 [PMID: 32686993]
  24. J Biomol Struct Dyn. 2022 Feb;40(3):1299-1315 [PMID: 32969333]
  25. Front Microbiol. 2021 Jan 25;11:592908 [PMID: 33746908]
  26. J Biomol Struct Dyn. 2022 Jul;40(10):4376-4388 [PMID: 33300454]
  27. J Comput Chem. 2017 Mar 30;38(8):541-552 [PMID: 28052351]
  28. Biophys Rev. 2017 Apr;9(2):91-102 [PMID: 28510083]
  29. Clin Pharmacol Ther. 2020 Oct;108(4):762-765 [PMID: 32378737]
  30. J Phys Chem B. 2020 Sep 24;124(38):8201-8208 [PMID: 32790379]
  31. J Mol Struct. 2021 Oct 15;1242:130733 [PMID: 34054142]
  32. J Antimicrob Chemother. 2012 Aug;67(8):1884-94 [PMID: 22535622]
  33. J Biomol Struct Dyn. 2022 Mar;40(5):2010-2023 [PMID: 33084512]
  34. Neurochem Res. 2019 Sep;44(9):2147-2155 [PMID: 31385137]
  35. Nucleic Acids Res. 2018 Jul 2;46(W1):W438-W442 [PMID: 29846643]
  36. J Biomol Struct Dyn. 2021 Jul;39(11):3924-3933 [PMID: 32448085]
  37. Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55 [PMID: 23633583]
  38. Drug Metab Dispos. 1984 Jul-Aug;12(4):464-9 [PMID: 6148214]
  39. Biophys Physicobiol. 2020 Oct 15;17:140-146 [PMID: 33240741]
  40. Biochem Soc Trans. 2021 Feb 26;49(1):281-295 [PMID: 33439253]
  41. RSC Adv. 2020 Oct 13;10(62):37707-37720 [PMID: 35515150]
  42. J Biomol Struct Dyn. 2022 Apr;40(6):2851-2864 [PMID: 33131430]
  43. Eur J Pharmacol. 2020 Nov 5;886:173430 [PMID: 32758569]
  44. Arch Biochem Biophys. 2008 Apr 1;472(1):34-42 [PMID: 18275836]
  45. Infect Genet Evol. 2021 Mar;88:104699 [PMID: 33385575]
  46. J King Saud Univ Sci. 2021 Mar;33(2):101315 [PMID: 33390681]
  47. J Biomol Struct Dyn. 2022 Mar;40(5):2217-2226 [PMID: 33111618]
  48. Sci Rep. 2020 Jan 29;10(1):1458 [PMID: 31996719]
  49. J Virol. 2008 May;82(9):4620-9 [PMID: 18305031]
  50. Gene Rep. 2020 Dec;21:100860 [PMID: 32875166]
  51. Chem Phys Lett. 2021 Jan 16;763:138193 [PMID: 33223560]
  52. Biosci Rep. 2020 Jun 26;40(6): [PMID: 32441299]
  53. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27381-27387 [PMID: 33051297]
  54. Signal Transduct Target Ther. 2020 Aug 27;5(1):173 [PMID: 32855394]
  55. Front Chem. 2021 Mar 12;9:622898 [PMID: 33889562]
  56. Nucleic Acids Res. 2015 Jul 1;43(W1):W436-42 [PMID: 25956651]
  57. Nucleic Acids Res. 2016 Jul 8;44(W1):W557-61 [PMID: 27151202]
  58. J Biomol Struct Dyn. 2021 May;39(8):2980-2992 [PMID: 32306862]
  59. J Biomol Struct Dyn. 2022 Aug;40(12):5643-5652 [PMID: 33446077]
  60. Science. 2020 Apr 24;368(6489):409-412 [PMID: 32198291]
  61. Curr Opin Struct Biol. 2021 Feb;66:183-192 [PMID: 33285342]
  62. Cells. 2020 Dec 10;9(12): [PMID: 33321790]
  63. Bioinformatics. 2020 Aug 15;36(16):4513-4515 [PMID: 32559277]
  64. Biophys J. 2015 Jul 21;109(2):277-86 [PMID: 26200863]
  65. J Biomol Struct Dyn. 2022 Jul;40(11):5147-5158 [PMID: 33382021]
  66. Life Sci. 2020 Jun 15;251:117627 [PMID: 32251634]
  67. Fundam Clin Pharmacol. 2021 Apr;35(2):260-276 [PMID: 33427370]
  68. Commun Biol. 2021 Jan 20;4(1):93 [PMID: 33473151]
  69. ACS Comb Sci. 2020 Jun 8;22(6):297-305 [PMID: 32402186]
  70. Antiviral Res. 2020 Jun;178:104805 [PMID: 32330482]
  71. N Z Vet J. 1981 Oct;29(10):174-8 [PMID: 7038568]
  72. Inform Med Unlocked. 2020;21:100484 [PMID: 33251326]
  73. Br J Clin Pharmacol. 2021 Mar;87(3):1589-1590 [PMID: 32779815]
  74. Sci Adv. 2020 Dec 9;6(50): [PMID: 33158912]
  75. Biocatal Agric Biotechnol. 2021 Mar;32:101924 [PMID: 33527003]
  76. J Chromatogr. 1987 Jan 23;413:326-31 [PMID: 3558686]
  77. J Biomol Struct Dyn. 2022 Oct;40(17):8100-8111 [PMID: 33950784]
  78. Proteins. 2002 Feb 1;46(2):190-6 [PMID: 11807947]
  79. Biochim Biophys Acta Mol Cell Res. 2018 Aug;1865(8):1114-1129 [PMID: 29750988]
  80. Eur J Clin Pharmacol. 1996;50(5):407-10 [PMID: 8839664]
  81. J Phys Chem B. 2019 May 30;123(21):4477-4486 [PMID: 31059260]
  82. Science. 1983 Aug 26;221(4613):823-8 [PMID: 6308762]
  83. J Chem Phys. 2012 Mar 21;136(11):115103 [PMID: 22443797]
  84. Nature. 2020 Jul;583(7816):459-468 [PMID: 32353859]
  85. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8464-9 [PMID: 24850865]
  86. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W310-6 [PMID: 22669906]
  87. Sci Rep. 2021 Mar 10;11(1):5543 [PMID: 33692377]

MeSH Term

Animals
Antiviral Agents
Binding Sites
COVID-19
Coronavirus 3C Proteases
DNA Helicases
Humans
Ivermectin
Kinetics
Mice
Molecular Docking Simulation
Molecular Dynamics Simulation
Protein Binding
Protein Conformation
Protein Interaction Domains and Motifs
SARS-CoV-2
Thermodynamics
alpha Karyopherins
beta Karyopherins
COVID-19 Drug Treatment

Chemicals

Antiviral Agents
KPNB1 protein, human
alpha Karyopherins
beta Karyopherins
karyopherin alpha 2
Ivermectin
avermectin
Coronavirus 3C Proteases
DNA Helicases

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2homologivermectinbehaviorassociatedstudyhomologsinteractioninterestbiophysicaldockingdifferentialstructuresCOVID-19Molecularpandemicacceleratedexistingdrugsmixturecalledavermectin-B1a[HB1a] + avermectin-B1b[HB1b]shownantiviralactivityvitroHoweverreportsinvestigatedpromisingtargetsinfectioncomputational-chemistryperspectiveusingmoleculardynamicsobservedaffinityHB1bviralHB1ahostconsideredinduceddisturbancesinfluencedhydrophobicitybindingpocketspresentfirstcomparativeanalysispotentialtheoreticalinhibitoryeffectavermectinsbiomoleculessuggestmultiobjectiveComparativeproteinsSARS-CoV-2:computationalapproachAvermectinIvermectindynamic

Similar Articles

Cited By