Dysregulation of Circulating miR-24-3p in Children with Obesity and Its Predictive Value for Metabolic Syndrome.

Bingjin Zhang, Lingling Xing, Beibei Wang
Author Information
  1. Bingjin Zhang: Department of Paediatrics, Shengli Oilfield Central Hospital, Dongying, China.
  2. Lingling Xing: Department of Paediatrics, Dongying District People's Hospital, Dongying, China.
  3. Beibei Wang: Department of Endocrinology, Shengli Oilfield Central Hospital, Dongying, China.

Abstract

INTRODUCTION: Obesity is a major risk factor for metabolic disorders in children. Therefore, it is particularly important to study the abnormal regulation of circulating miR-24-3p in obese children and its predictive value for metabolic syndrome.
METHODS: Serum samples were obtained from children with obesity (n = 45), obese children with metabolic syndrome (n = 52), and healthy controls (n = 50). The expression levels of miR-24-3p were detected by reverse transcription quantitative PCR. The ROC curve was used to evaluate the diagnostic value of miR-24-3p. Pearson's correlation analysis was performed to evaluate the relationship between serum miR-24-3p and different clinical parameters. Logistic regression analysis was used to evaluate the relationship between miR-24-3p and obesity with metabolic syndrome in children.
RESULTS: The expression of miR-24-3p was the highest in obese children with metabolic syndrome. ROC results showed that miR-24-3p had the ability to distinguish healthy individuals from obese children (area under the curve [AUC] = 0.951) and can predict the occurrence of metabolic syndrome for obese children (AUC = 0.890). The expression level of miR-24-3p was positively correlated with body mass index (r = 0.817, p < 0.001), fasting blood glucose (r = 0.798, p < 0.001), triglycerides (r = 0.773, p < 0.001), systolic blood pressure (r = 0.746, p < 0.001), and diastolic blood pressure (r = 0.623, p < 0.001), respectively. Logistic regression analysis showed that miR-24-3p was an independent influence factor for the occurrence of metabolic syndrome in obese children.
DISCUSSION/CONCLUSION: MiR-24-3p is a potential noninvasive marker for children with obesity and has predictive value for the occurrence of metabolic syndrome.

Keywords

References

  1. Sci Rep. 2017 Jan 27;7:41518 [PMID: 28128316]
  2. Obesity (Silver Spring). 2020 Aug;28(8):1467-1476 [PMID: 32573115]
  3. Public Health Nurs. 2014 Nov-Dec;31(6):545-55 [PMID: 25112374]
  4. Nature. 2010 Aug 12;466(7308):835-40 [PMID: 20703300]
  5. Oncotarget. 2018 Feb 5;9(16):12868-12878 [PMID: 29560116]
  6. J Rheumatol. 2020 Dec 1;47(12):1760-1767 [PMID: 32115427]
  7. Int J Mol Sci. 2017 Sep 14;18(9): [PMID: 28906481]
  8. Mol Neurobiol. 2020 Nov;57(11):4408-4416 [PMID: 32737762]
  9. Circulation. 2012 Dec 11;126(24):2870-7 [PMID: 23230316]
  10. Diabetologia. 2020 Dec;63(12):2699-2712 [PMID: 32728892]
  11. J Neurol Neurosurg Psychiatry. 2019 Jul;90(7):747-754 [PMID: 30910858]
  12. PLoS One. 2019 Mar 14;14(3):e0213685 [PMID: 30870483]
  13. Diabetes. 1988 Dec;37(12):1595-607 [PMID: 3056758]
  14. Children (Basel). 2018 Jan 15;5(1): [PMID: 29342981]
  15. Pediatr Res. 2021 Jan;89(1):63-73 [PMID: 32330927]
  16. Dis Markers. 2017;2017:7293459 [PMID: 29332987]
  17. Sci Rep. 2019 Jun 26;9(1):9292 [PMID: 31243316]
  18. J Obes. 2013;2013:269038 [PMID: 24000310]
  19. Nutr Metab (Lond). 2020 Jan 22;17:9 [PMID: 31993071]
  20. Cardiovasc Diabetol. 2014 Oct 20;13:146 [PMID: 25326814]
  21. Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2041-2046 [PMID: 26778752]
  22. Obesity (Silver Spring). 2012 Apr;20(4):748-55 [PMID: 21633399]
  23. Int J Endocrinol. 2018 Mar 12;2018:7351902 [PMID: 29721017]
  24. Allergy Asthma Proc. 2015 Mar-Apr;36(2):e29-36 [PMID: 25715236]
  25. PLoS One. 2014 Feb 28;9(2):e90430 [PMID: 24587359]
  26. Lipids Health Dis. 2016 Jan 05;15:1 [PMID: 26728949]
  27. Expert Rev Cardiovasc Ther. 2011 Jun;9(6):753-61 [PMID: 21714606]
  28. Biomed Environ Sci. 2005 Dec;18(6):390-400 [PMID: 16544521]
  29. Life (Basel). 2020 Jul 28;10(8): [PMID: 32731619]
  30. J Clin Med. 2020 Mar 20;9(3): [PMID: 32244968]
  31. Circulation. 2005 Oct 25;112(17):2735-52 [PMID: 16157765]
  32. Public Health Nutr. 2011 Jan;14(1):77-92 [PMID: 20854721]

MeSH Term

Biomarkers
Child
Humans
Metabolic Syndrome
MicroRNAs
Pediatric Obesity
ROC Curve

Chemicals

Biomarkers
MIRN24 microRNA, human
MicroRNAs

Word Cloud

Created with Highcharts 10.0.00childrenmiR-24-3p=metabolicsyndromeobeserp<001ObesityvalueobesitynexpressionevaluateanalysisoccurrencebloodfactorpredictivehealthyROCcurveusedrelationshipLogisticregressionshowedpressureMiR-24-3pMetabolicINTRODUCTION:majorriskdisordersThereforeparticularlyimportantstudyabnormalregulationcirculatingMETHODS:Serumsamplesobtained4552controls50levelsdetectedreversetranscriptionquantitativePCRdiagnosticPearson'scorrelationperformedserumdifferentclinicalparametersRESULTS:highestresultsabilitydistinguishindividualsarea[AUC]951canpredictAUC890levelpositivelycorrelatedbodymassindex817fastingglucose798triglycerides773systolic746diastolic623respectivelyindependentinfluenceDISCUSSION/CONCLUSION:potentialnoninvasivemarkerDysregulationCirculatingChildrenPredictiveValueSyndromeDiagnosis

Similar Articles

Cited By