The Impact of Host Genotype, Intestinal Sites and Probiotics Supplementation on the Gut Microbiota Composition and Diversity in Sheep.

Xiaoqi Wang, Zhichao Zhang, Xiaoping Wang, Qi Bao, Rujing Wang, Ziyuan Duan
Author Information
  1. Xiaoqi Wang: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
  2. Zhichao Zhang: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  3. Xiaoping Wang: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  4. Qi Bao: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  5. Rujing Wang: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
  6. Ziyuan Duan: Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

Three sampling strategies with a 16s rRNA high-throughput sequencing and gene expression assay (by RT-PCR) were designed, to better understand the host and probiotics effect on gut microbiota in sheep. Sampling: (1) colon contents and back-fat tissues from small-tailed Han sheep (SHS), big-tailed Hulun Buir sheep (BHBS), and short-tailed Steppe sheep (SHBS) ( = 12, 14, 12); (2) jejunum, cecum and colon contents, and feces from Tan sheep (TS, = 6); (3) feces from TS at 4 time points (nonfeeding, 30 and 60 feeding days, and stop feeding 30 days) with probiotics supplementation ( = 7). The results indicated SHS had the highest abundance, the thinnest back-fat, and the lowest expression of , , , , and . Some bacteria orders and families could be potential biomarkers for sheep breeds with a distinct distribution of bacterial abundance, implying the host genotype is predominant in shaping unique microbiota under a shared environment. The microbiota diversity and populations significantly changed after 60 days of feeding but restored to its initial state, with mostly colonies, after 30 days ceased. The microbiota composition was greatly different between the small and large intestines, but somewhat different between the large intestine and feces; feces may be reliable for studying large intestinal microbiota in ruminants.

Keywords

References

  1. Gut. 2021 Mar;70(3):595-605 [PMID: 33051190]
  2. Nature. 2006 Dec 21;444(7122):1027-31 [PMID: 17183312]
  3. Animal. 2010 Jul;4(7):979-92 [PMID: 22444604]
  4. Sci Rep. 2020 Jul 1;10(1):10721 [PMID: 32612135]
  5. Front Microbiol. 2020 Jul 31;11:1863 [PMID: 32849451]
  6. Nat Ecol Evol. 2017 May 08;1(6):161 [PMID: 28812632]
  7. PLoS One. 2019 Nov 8;14(11):e0225079 [PMID: 31703107]
  8. Sci Rep. 2015 Nov 03;5:16116 [PMID: 26527325]
  9. Microbiome. 2019 Jun 13;7(1):92 [PMID: 31196178]
  10. Front Microbiol. 2019 Sep 13;10:2126 [PMID: 31572332]
  11. Cell Host Microbe. 2016 May 11;19(5):731-43 [PMID: 27173935]
  12. Br J Nutr. 2020 Feb 28;123(4):372-382 [PMID: 31690358]
  13. Antonie Van Leeuwenhoek. 2019 Feb;112(2):225-235 [PMID: 30155662]
  14. J Antimicrob Chemother. 2019 Jan 1;74(Suppl 1):i6-i15 [PMID: 30690540]
  15. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15718-23 [PMID: 15505215]
  16. Sci Rep. 2020 Sep 15;10(1):15101 [PMID: 32934296]
  17. Bioinformatics. 2014 Nov 1;30(21):3123-4 [PMID: 25061070]
  18. Mucosal Immunol. 2018 Sep;11(5):1299-1305 [PMID: 29743614]
  19. Gut. 2014 May;63(5):727-35 [PMID: 23804561]
  20. Child Obes. 2020 Jul;16(5):358-366 [PMID: 32429742]
  21. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  22. J Med Invest. 2016;63(1-2):27-37 [PMID: 27040049]
  23. Animals (Basel). 2019 Sep 05;9(9): [PMID: 31491862]
  24. PeerJ. 2020 Aug 4;8:e9591 [PMID: 32832265]
  25. J Appl Microbiol. 2020 Jan;128(1):280-291 [PMID: 31563150]
  26. Obesity (Silver Spring). 2010 Jan;18(1):190-5 [PMID: 19498350]
  27. Asian-Australas J Anim Sci. 2017 Jan;30(1):100-110 [PMID: 27383798]
  28. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  29. G3 (Bethesda). 2018 Feb 2;8(2):377-383 [PMID: 29208649]
  30. J Biol Regul Homeost Agents. 2018 Nov-Dec;32(5):1421-1432 [PMID: 30574746]
  31. Microbiol Spectr. 2019 Nov;7(6): [PMID: 31858953]
  32. J Anim Physiol Anim Nutr (Berl). 2020 Nov;104(6):1835-1850 [PMID: 32996177]
  33. J Nutr. 1995 Jun;125(6):1401-12 [PMID: 7782892]
  34. PLoS One. 2020 Sep 11;15(9):e0238923 [PMID: 32915886]
  35. Front Microbiol. 2018 May 01;9:803 [PMID: 29765359]
  36. J Biol Chem. 2014 Oct 24;289(43):29881-91 [PMID: 25157099]
  37. Biomedicines. 2020 Aug 14;8(8): [PMID: 32823858]
  38. Benef Microbes. 2020 Aug 12;11(4):361-373 [PMID: 32755263]
  39. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  40. Front Microbiol. 2018 Jan 31;9:32 [PMID: 29445360]
  41. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  42. Sci Rep. 2016 Jun 03;6:27427 [PMID: 27255518]
  43. Front Vet Sci. 2021 Jan 15;7:570074 [PMID: 33521074]
  44. Science. 2009 Dec 18;326(5960):1694-7 [PMID: 19892944]
  45. Food Funct. 2018 Dec 13;9(12):6268-6278 [PMID: 30403219]
  46. BMC Biol. 2017 Dec 14;15(1):120 [PMID: 29241453]
  47. Eur Neuropsychopharmacol. 2021 Feb;43:10-21 [PMID: 32933808]
  48. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  49. Molecules. 2020 Sep 02;25(17): [PMID: 32887336]
  50. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  51. Cytotechnology. 2018 Oct;70(5):1423-1433 [PMID: 30051280]
  52. Arch Microbiol. 2019 Nov;201(9):1163-1171 [PMID: 31172250]
  53. BMC Vet Res. 2020 Jul 23;16(1):254 [PMID: 32703277]
  54. Microbiologyopen. 2020 May;9(5):e990 [PMID: 32175695]
  55. Compr Physiol. 2013 Apr;3(2):741-83 [PMID: 23720328]
  56. Microbiome. 2020 Jul 22;8(1):110 [PMID: 32698902]
  57. Microorganisms. 2020 Oct 14;8(10): [PMID: 33066420]
  58. Toxicol Appl Pharmacol. 2018 Sep 15;355:198-210 [PMID: 30008377]

Grants

  1. XDA 26040305/THE STRATEGIC PRIORITY RESEARCH PROGRAM OF THE CHINESE ACADEMY OF SCIENCES
  2. 2016YFC0500709/THE NATIONAL KEY R&D PROGRAM OF CHINA
  3. KFZD-SW-219/THE KEY PROJECTS OF CHINESE ACADEMY OF SCIENCES

Word Cloud

Created with Highcharts 10.0.0sheepmicrobiotafecesdays=30feedinglargeexpressionhostprobioticsgutcoloncontentsback-fatSHS12TS60abundancebreedscompositiondifferentintestinalThreesamplingstrategies16srRNAhigh-throughputsequencinggeneassayRT-PCRdesignedbetterunderstandeffectSampling:1tissuessmall-tailedHanbig-tailedHulunBuirBHBSshort-tailedSteppeSHBS142jejunumcecumTan634timepointsnonfeedingstopsupplementation7resultsindicatedhighestthinnestlowestbacteriaordersfamiliespotentialbiomarkersdistinctdistributionbacterialimplyinggenotypepredominantshapinguniquesharedenvironmentdiversitypopulationssignificantlychangedrestoredinitialstatemostlycoloniesceasedgreatlysmallintestinessomewhatintestinemayreliablestudyingruminantsImpactHostGenotypeIntestinalSitesProbioticsSupplementationGutMicrobiotaCompositionDiversitySheepBifidobacteriumsites

Similar Articles

Cited By