A Modified Multivariable Complexity Measure Algorithm and Its Application for Identifying Mental Arithmetic Task.

Dizhen Ma, Shaobo He, Kehui Sun
Author Information
  1. Dizhen Ma: School of Physics and Electronics, Central South University, Changsha 410083, China.
  2. Shaobo He: School of Physics and Electronics, Central South University, Changsha 410083, China. ORCID
  3. Kehui Sun: School of Physics and Electronics, Central South University, Changsha 410083, China. ORCID

Abstract

Properly measuring the complexity of time series is an important issue. The permutation entropy (PE) is a widely used as an effective complexity measurement algorithm, but it is not suitable for the complexity description of multi-dimensional data. In this paper, in order to better measure the complexity of multi-dimensional time series, we proposed a modified multivariable PE (MMPE) algorithm with principal component analysis (PCA) dimensionality reduction, which is a new multi-dimensional time series complexity measurement algorithm. The analysis results of different chaotic systems verify that MMPE is effective. Moreover, we applied it to the comlexity analysis of EEG data. It shows that the person during mental arithmetic task has higher complexity comparing with the state before mental arithmetic task. In addition, we also discussed the necessity of the PCA dimensionality reduction.

Keywords

References

  1. Technol Health Care. 2020;28(1):57-66 [PMID: 31104032]
  2. Entropy (Basel). 2018 Apr 10;20(4): [PMID: 33265355]
  3. Front Physiol. 2019 Jun 26;10:809 [PMID: 31293457]
  4. Chaos. 1995 Mar;5(1):110-117 [PMID: 12780163]
  5. IEEE Trans Biomed Eng. 2017 Dec;64(12):2872-2879 [PMID: 28287954]
  6. Phys Rev Lett. 2002 Apr 29;88(17):174102 [PMID: 12005759]
  7. Entropy (Basel). 2019 Jan 07;21(1): [PMID: 33266750]
  8. Front Neurosci. 2017 Mar 07;11:103 [PMID: 28326009]
  9. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):225-32 [PMID: 23314778]
  10. IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):266-72 [PMID: 17601197]
  11. PLoS One. 2018 Sep 4;13(9):e0202558 [PMID: 30180194]
  12. Circulation. 2000 Jun 13;101(23):E215-20 [PMID: 10851218]
  13. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 [PMID: 10843903]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021906 [PMID: 15783351]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011915 [PMID: 19257077]
  16. Biol Cybern. 2000 Oct;83(4):355-66 [PMID: 11039700]
  17. Phys Rev E. 2019 Aug;100(2-1):022131 [PMID: 31574762]
  18. Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202 [PMID: 26953178]
  19. Phys Eng Sci Med. 2020 Jun;43(2):577-592 [PMID: 32524443]
  20. PLoS One. 2018 Sep 25;13(9):e0204339 [PMID: 30252915]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061918 [PMID: 22304127]

Grants

  1. 61901530/the Natural Science Foundation of China
  2. 62071496/the Natural Science Foundation of China
  3. 62061008/the Natural Science Foundation of China
  4. 2020JJ5767/the Natural Science Foundation of Hunan Province

Word Cloud

Created with Highcharts 10.0.0complexityseriestimealgorithmmulti-dimensionalanalysisPCApermutationentropyPEeffectivemeasurementdatamultivariableMMPEdimensionalityreductionchaoticEEGmentalarithmetictaskProperlymeasuringimportantissuewidelyusedsuitabledescriptionpaperorderbettermeasureproposedmodifiedprincipalcomponentnewresultsdifferentsystemsverifyMoreoverappliedcomlexityshowspersonhighercomparingstateadditionalsodiscussednecessityModifiedMultivariableComplexityMeasureAlgorithmApplicationIdentifyingMentalArithmeticTasksignal

Similar Articles

Cited By (2)