A Temperature Conditioned Markov Chain Model for Predicting the Dynamics of Mosquito Vectors of Disease.

Petros T Damos, Jesse Dorrestijn, Thomas Thomidis, José Tuells, Pablo Caballero
Author Information
  1. Petros T Damos: Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain. ORCID
  2. Jesse Dorrestijn: Faculty of Civil Engineering and Geoscience, Delft University of Technology, 2628 CN Delft, The Netherlands.
  3. Thomas Thomidis: Department of Nutritional Sciences and Dietetics, International Hellenic University of Thessaloniki, 57400 Thessaloniki, Greece.
  4. José Tuells: Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain. ORCID
  5. Pablo Caballero: Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Science, University of Alicante, Carretera San Vicente s/n, 03690 San Vicente del Raispeig, ALC, Spain. ORCID

Abstract

Understanding and predicting mosquito population dynamics is crucial for gaining insight into the abundance of arthropod disease vectors and for the design of effective vector control strategies. In this work, a climate-conditioned Markov chain (CMC) model was developed and applied for the first time to predict the dynamics of vectors of important medical diseases. Temporal changes in mosquito population profiles were generated to simulate the probabilities of a high population impact. The simulated transition probabilities of the mosquito populations achieved from the trained model are very near to the observed data transitions that have been used to parameterize and validate the model. Thus, the CMC model satisfactorily describes the temporal evolution of the mosquito population process. In general, our numerical results, when temperature is considered as the driver of change, indicate that it is more likely for the population system to move into a state of high population level when the former is a state of a lower population level than the opposite. Field data on frequencies of successive mosquito population levels, which were not used for the data inferred MC modeling, were assembled to obtain an empirical intensity transition matrix and the frequencies observed. Our findings match to a certain degree the empirical results in which the probabilities follow analogous patterns while no significant differences were observed between the transition matrices of the CMC model and the validation data (ChiSq = 14.58013, df = 24, = 0.9324451). The proposed modeling approach is a valuable eco-epidemiological study. Moreover, compared to traditional Markov chains, the benefit of the current CMC model is that it takes into account the stochastic conditional properties of ecological-related climate variables. The current modeling approach could save costs and time in establishing vector eradication programs and mosquito surveillance programs.

Keywords

References

  1. Sci Rep. 2014 Dec 19;4:7558 [PMID: 25523357]
  2. Insects. 2019 Nov 07;10(11): [PMID: 31703421]
  3. J Med Entomol. 1990 Sep;27(5):892-8 [PMID: 2231624]
  4. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665): [PMID: 25688013]
  5. Front Zool. 2010 Jan 21;7:3 [PMID: 20205866]
  6. Parasit Vectors. 2019 Oct 2;12(1):462 [PMID: 31578155]
  7. J Exp Biol. 2010 Mar 15;213(6):946-54 [PMID: 20190119]
  8. J Vector Ecol. 2012 Dec;37(2):269-75 [PMID: 23181848]
  9. Math Biosci. 2000 Jan;163(1):1-33 [PMID: 10652843]
  10. Med Clin (Engl Ed). 2018 Dec 14;151(11):450-459 [PMID: 32289078]
  11. Proc Biol Sci. 2004 Mar 7;271(1538):501-7 [PMID: 15129960]
  12. PLoS Comput Biol. 2018 Mar 9;14(3):e1006047 [PMID: 29522514]
  13. Ecology. 2015 Jan;96(1):203-13 [PMID: 26236905]
  14. J Theor Biol. 2016 Jul 7;400:65-79 [PMID: 27084359]
  15. Theor Popul Biol. 1989 Jun;35(3):227-94 [PMID: 2756495]
  16. J Med Entomol. 2006 Mar;43(2):309-17 [PMID: 16619616]
  17. PLoS One. 2017 Dec 27;12(12):e0190049 [PMID: 29281726]
  18. Math Biosci Eng. 2018 Feb 1;15(1):57-93 [PMID: 29161827]
  19. Am J Trop Med Hyg. 2012 Apr;86(4):642-8 [PMID: 22492149]
  20. FEMS Microbiol Lett. 2017 Oct 16;364(19): [PMID: 28957457]
  21. J Math Biol. 1995;33(6):581-601 [PMID: 7608639]
  22. PLoS One. 2013 Nov 14;8(11):e79276 [PMID: 24244467]
  23. Theor Popul Biol. 1985 Aug;28(1):1-17 [PMID: 4060082]
  24. J Med Entomol. 2016 Nov;53(6):1378-1384 [PMID: 27493249]
  25. Insects. 2018 Nov 06;9(4): [PMID: 30404142]
  26. J Med Entomol. 1987 Sep;24(5):523-31 [PMID: 3669024]
  27. Adv Parasitol. 2006;62:345-81 [PMID: 16647975]
  28. Epidemics. 2019 Sep;28:100344 [PMID: 31175008]
  29. Acta Trop. 2019 May;193:129-141 [PMID: 30844376]
  30. PLoS One. 2013;8(3):e60524 [PMID: 23555987]
  31. Science. 2005 Oct 14;310(5746):248-9 [PMID: 16224011]
  32. Sci Rep. 2017 Jul 10;7(1):5022 [PMID: 28694450]
  33. Theor Popul Biol. 2015 Aug;103:93-102 [PMID: 26025884]
  34. Infect Dis Poverty. 2018 Nov 29;7(1):126 [PMID: 30541601]
  35. Trends Parasitol. 2018 Mar;34(3):227-245 [PMID: 29229233]
  36. J Math Biol. 2017 May;74(6):1351-1395 [PMID: 27647127]
  37. Ecol Lett. 2015 Mar;18(3):303-14 [PMID: 25611188]
  38. FEMS Microbiol Lett. 2018 Feb 1;365(2): [PMID: 29149298]
  39. Parasit Vectors. 2014 Jun 12;7:268 [PMID: 24924481]

Word Cloud

Created with Highcharts 10.0.0populationmosquitomodelCMCdataMarkovprobabilitiestransitionobservedmodeling=dynamicsvectorsvectortimehighusedprocessresultsstatelevelfrequenciesempiricalapproachcurrentstochasticprogramsUnderstandingpredictingcrucialgaininginsightabundancearthropoddiseasedesigneffectivecontrolstrategiesworkclimate-conditionedchaindevelopedappliedfirstpredictimportantmedicaldiseasesTemporalchangesprofilesgeneratedsimulateimpactsimulatedpopulationsachievedtrainedneartransitionsparameterizevalidateThussatisfactorilydescribestemporalevolutiongeneralnumericaltemperatureconsidereddriverchangeindicatelikelysystemmoveformerloweroppositeFieldsuccessivelevelsinferredMCassembledobtainintensitymatrixfindingsmatchcertaindegreefollowanalogouspatternssignificantdifferencesmatricesvalidationChiSq1458013df2409324451proposedvaluableeco-epidemiologicalstudyMoreovercomparedtraditionalchainsbenefittakesaccountconditionalpropertiesecological-relatedclimatevariablessavecostsestablishingeradicationsurveillanceTemperatureConditionedChainModelPredictingDynamicsMosquitoVectorsDiseaseCulexspWestNilevirusdecisionmakingmosquitospublichealth

Similar Articles

Cited By