Cell Stress Induces Mislocalization of Transcription Factors with Mitochondrial Enrichment.

Chiara Rossi, Anna Fernàndez, Pascual Torres, Omar Ramirez-Nuñez, Ana Belén Granado-Serrano, Laia Fontdevila, Mònica Povedano, Reinald Pamplona, Isidro Ferrer, Manuel Portero-Otin
Author Information
  1. Chiara Rossi: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain. ORCID
  2. Anna Fernàndez: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain.
  3. Pascual Torres: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain.
  4. Omar Ramirez-Nuñez: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain.
  5. Ana Belén Granado-Serrano: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain.
  6. Laia Fontdevila: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain.
  7. Mònica Povedano: Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, E08907 Barcelona, Spain.
  8. Reinald Pamplona: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain. ORCID
  9. Isidro Ferrer: Department of Pathology and Experimental Therapeutics, University of Barcelona, E08900 Barcelona, Spain. ORCID
  10. Manuel Portero-Otin: Metabolic Physiopathology Research Group, Experimental Medicine Department, Lleida University-Lleida Biochemical Research Institute (UdL-IRBLleida), E25198 Lleida, Spain. ORCID

Abstract

Previous evidence links the formation of extranuclear inclusions of transcription factors, such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and osmotic stress. To further characterize its extranuclear location, we performed a high-content screening based on confocal microscopy and automatized image analyses of an epithelial cell culture treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations and times to recreate the stresses mentioned above. We also performed a subcellular fractionation of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed the REST-regulated mRNAs. The results show that these nuclear proteins exhibit a mitochondrial location, together with significant nuclear/extranuclear ratio changes, in a protein and stress-specific manner. The presence of these proteins in enriched mitochondrial fractions in vivo confirmed the results of the image analyses. TDP-43 aggregation was associated with alterations in the mRNA levels of the REST target genes involved in calcium homeostasis, apoptosis, and metabolism. In conclusion, cell stress increased the mitochondrial translocation of nuclear proteins, increasing the chance of proteostasis alterations. Furthermore, TDP-43 aggregation impacts REST target genes, disclosing an exciting interaction between these two transcription factors in neurodegenerative processes.

Keywords

References

  1. Cell Rep. 2017 Jan 17;18(3):659-672 [PMID: 28099845]
  2. Acta Neuropathol. 2017 Aug;134(2):187-205 [PMID: 28401333]
  3. Mol Neurodegener. 2011 Aug 08;6:57 [PMID: 21819629]
  4. Neurosci Lett. 2019 Apr 23;699:59-63 [PMID: 30684677]
  5. EMBO J. 2017 Nov 15;36(22):3356-3371 [PMID: 29018038]
  6. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):726-31 [PMID: 20080742]
  7. Sci Transl Med. 2020 Sep 2;12(559): [PMID: 32878979]
  8. Genome Biol Evol. 2014 Sep 22;6(10):2634-46 [PMID: 25245407]
  9. Front Mol Neurosci. 2017 Aug 22;10:263 [PMID: 28878620]
  10. Annu Rev Physiol. 2015;77:481-504 [PMID: 25668026]
  11. J Neurosci. 2021 Apr 21;41(16):3731-3746 [PMID: 33563726]
  12. Am J Pathol. 2007 Oct;171(4):1312-23 [PMID: 17823282]
  13. Int J Mol Sci. 2020 Sep 12;21(18): [PMID: 32932600]
  14. Cell. 2020 Oct 29;183(3):636-649.e18 [PMID: 33031745]
  15. Acta Neuropathol. 2011 Sep;122(3):259-70 [PMID: 21706176]
  16. Virchows Arch. 1997 Dec;431(6):441-8 [PMID: 9428932]
  17. PLoS Genet. 2019 May 17;15(5):e1007947 [PMID: 31100073]
  18. EMBO J. 2006 Mar 8;25(5):1058-69 [PMID: 16511568]
  19. J Neurochem. 2016 Apr;137(2):253-65 [PMID: 26756888]
  20. Mol Cell Neurosci. 2019 Oct;100:103396 [PMID: 31445085]
  21. Science. 2008 Mar 21;319(5870):1668-72 [PMID: 18309045]
  22. Elife. 2020 May 26;9: [PMID: 32452765]
  23. Med Res Rev. 2020 Jul;40(4):1385-1439 [PMID: 32043639]
  24. Front Mol Neurosci. 2019 Feb 14;12:25 [PMID: 30837838]
  25. PLoS Biol. 2018 Jul 3;16(7):e2005970 [PMID: 29969450]
  26. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):E736-45 [PMID: 23382207]
  27. J Neurochem. 2009 Nov;111(4):1051-61 [PMID: 19765185]
  28. Hum Mol Genet. 2011 Apr 1;20(7):1400-10 [PMID: 21257637]
  29. Exp Biol Med (Maywood). 2020 Nov;245(17):1584-1593 [PMID: 32212857]
  30. Neuromolecular Med. 2014 Dec;16(4):669-85 [PMID: 24980941]
  31. J Colloid Interface Sci. 2005 Jul 1;287(1):80-4 [PMID: 15914151]
  32. Acta Histochem. 2017 Apr;119(3):315-326 [PMID: 28314612]
  33. Dev Biol. 2018 Feb 1;434(1):48-62 [PMID: 29157562]
  34. Front Cell Dev Biol. 2019 Aug 07;7:154 [PMID: 31448275]
  35. Acta Neuropathol. 2019 Jan;137(1):47-69 [PMID: 30450515]
  36. Mol Cell Biochem. 2011 May;351(1-2):41-58 [PMID: 21210296]
  37. Nature. 1999 Dec 9;402(6762):615-22 [PMID: 10604467]
  38. Brain. 2010 Jun;133(Pt 6):1763-71 [PMID: 20472655]
  39. Science. 2008 Mar 21;319(5870):1665-8 [PMID: 18356527]
  40. Prog Neurobiol. 2016 Oct - Nov;145-146:78-97 [PMID: 27693252]
  41. Nat Med. 2004 Jul;10 Suppl:S10-7 [PMID: 15272267]
  42. Nature. 2014 Mar 27;507(7493):448-54 [PMID: 24670762]
  43. Biochem Pharmacol. 2020 Jan;171:113728 [PMID: 31759978]
  44. J Neurochem. 2021 Jul;158(2):482-499 [PMID: 33905537]
  45. Nat Neurosci. 2018 Feb;21(2):228-239 [PMID: 29311743]
  46. Nat Med. 2016 Aug;22(8):869-78 [PMID: 27348499]
  47. Science. 2016 Jan 8;351(6269):173-6 [PMID: 26634439]

Grants

  1. PI 20-0155/ISCIII

MeSH Term

Animals
Brain
Endoplasmic Reticulum Stress
Female
Humans
Male
Mammary Glands, Human
Mice
Mice, Transgenic
Mitochondria
Oxidative Stress
Transcription Factors

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0TDP-43RESTtranscriptionfactorsstresscellproteinsmitochondrialaggregationextranuclearERKJunlocationperformedimageanalysessubcellularfractionationtransgenicmiceresultsnuclearalterationstargetgenesPreviousevidencelinksformationinclusionsoxidativeendoplasmic-reticulumproteasomalosmoticcharacterizehigh-contentscreeningbasedconfocalmicroscopyautomatizedepithelialculturetreatedhydrogenperoxidethapsigarginepoxomicinsorbitoldifferentconcentrationstimesrecreatestressesmentionedalsobrainoverexpressingQ331K-mutatedTARDBPanalyzedREST-regulatedmRNAsshowexhibittogethersignificantnuclear/extranuclearratiochangesproteinstress-specificmannerpresenceenrichedfractionsvivoconfirmedassociatedmRNAlevelsinvolvedcalciumhomeostasisapoptosismetabolismconclusionincreasedtranslocationincreasingchanceproteostasisFurthermoreimpactsdisclosingexcitinginteractiontwoneurodegenerativeprocessesCellStressInducesMislocalizationTranscriptionFactorsMitochondrialEnrichmentmitochondria

Similar Articles

Cited By