Virus Infection Variability by Single-Cell Profiling.

Maarit Suomalainen, Urs F Greber
Author Information
  1. Maarit Suomalainen: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. ORCID
  2. Urs F Greber: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

Abstract

Cell-to-cell variability of infection has long been known, yet it has remained one of the least understood phenomena in infection research. It impacts on disease onset and development, yet only recently underlying mechanisms have been studied in clonal cell cultures by single-virion immunofluorescence microscopy and flow cytometry. In this review, we showcase how single-cell RNA sequencing (scRNA-seq), single-molecule RNA-fluorescence in situ hybridization (FISH), and copper(I)-catalyzed azide-alkyne cycloaddition (click) with alkynyl-tagged viral genomes dissect infection variability in human and mouse cells. We show how the combined use of scRNA-FISH and click-chemistry reveals highly variable onsets of adenoviral gene expression, and how single live cell plaques reveal lytic and nonlytic adenovirus transmissions. The review highlights how scRNA-seq profiling and scRNA-FISH of coxsackie, influenza, dengue, zika, and herpes simplex virus infections uncover transcriptional variability, and how the host interferon response tunes influenza and sendai virus infections. We introduce the concept of "cell state" in infection variability, and conclude with advances by single-cell simultaneous measurements of chromatin accessibility and mRNA counts at high-throughput. Such technology will further dissect the sequence of events in virus infection and pathology, and better characterize the genetic and genomic stability of viruses, cell autonomous innate immune responses, and mechanisms of tissue injury.

Keywords

References

  1. Trends Microbiol. 2017 Nov;25(11):932-941 [PMID: 28668335]
  2. Nat Commun. 2015 Nov 20;6:8938 [PMID: 26586423]
  3. Traffic. 2008 Dec;9(12):2265-78 [PMID: 18980614]
  4. Immunol Rev. 2018 Sep;285(1):72-80 [PMID: 30129203]
  5. J Virol. 2004 Feb;78(4):1706-17 [PMID: 14747536]
  6. Proc Natl Acad Sci U S A. 1952 Aug;38(8):747-52 [PMID: 16589172]
  7. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  8. Cold Spring Harb Perspect Med. 2021 Oct 1;11(10): [PMID: 32661015]
  9. Elife. 2019 May 15;8: [PMID: 31090537]
  10. FEBS Lett. 2019 Dec;593(24):3571-3582 [PMID: 31411731]
  11. J Cell Sci. 2020 Nov 9;134(5): [PMID: 32917739]
  12. Front Microbiol. 2020 Jun 03;11:1152 [PMID: 32582094]
  13. PLoS Pathog. 2018 Mar 9;14(3):e1006914 [PMID: 29522575]
  14. PLoS Pathog. 2020 Aug 13;16(8):e1008760 [PMID: 32790753]
  15. Viruses. 2020 Jan 17;12(1): [PMID: 31963544]
  16. EMBO J. 2021 Mar 1;40(5):e105912 [PMID: 33283287]
  17. J Virol. 2018 Dec 10;93(1): [PMID: 30305358]
  18. Cell Host Microbe. 2011 Aug 18;10(2):105-17 [PMID: 21843868]
  19. Viruses. 2020 Jan 07;12(1): [PMID: 31936115]
  20. FEBS Lett. 2019 Dec;593(24):3419-3448 [PMID: 31758703]
  21. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  22. Cell. 2020 Nov 12;183(4):1103-1116.e20 [PMID: 33098772]
  23. Mol Ther. 2001 Jul;4(1):13-21 [PMID: 11472101]
  24. PLoS Pathog. 2020 Oct 16;16(10):e1008974 [PMID: 33064776]
  25. iScience. 2021 May 15;24(6):102543 [PMID: 34151222]
  26. J Leukoc Biol. 2021 Jul;110(1):115-122 [PMID: 32895987]
  27. J Exp Med. 1954 Feb;99(2):167-82 [PMID: 13130792]
  28. Cell Rep. 2020 Sep 22;32(12):108175 [PMID: 32946807]
  29. Nat Methods. 2014 Apr;11(4):360-1 [PMID: 24681720]
  30. J Immunol Res. 2020 Aug 6;2020:8624963 [PMID: 32802896]
  31. Nat Rev Mol Cell Biol. 2020 Jun;21(6):327-340 [PMID: 32235894]
  32. J Virol. 2006 Aug;80(16):8060-8 [PMID: 16873262]
  33. PLoS Pathog. 2010 Mar 19;6(3):e1000808 [PMID: 20333243]
  34. Cell. 2016 May 5;165(4):780-91 [PMID: 27153492]
  35. J Virol. 2013 Nov;87(22):12367-79 [PMID: 24027314]
  36. Nat Methods. 2021 Jan;18(1):18-22 [PMID: 33408406]
  37. Cell Syst. 2018 Jun 27;6(6):679-691.e4 [PMID: 29886109]
  38. Nature. 2019 Jul;571(7765):419-423 [PMID: 31292545]
  39. Nat Commun. 2020 Mar 12;11(1):1338 [PMID: 32165633]
  40. J Virol. 2019 Mar 5;93(6): [PMID: 30626670]
  41. mBio. 2016 Sep 06;7(5): [PMID: 27601575]
  42. EMBO J. 2020 Nov 2;39(21):e103476 [PMID: 32985719]
  43. Cell Rep. 2019 Dec 10;29(11):3539-3550.e4 [PMID: 31825834]
  44. Cell. 2020 Aug 20;182(4):947-959.e17 [PMID: 32735851]
  45. J Virol. 2017 Oct 27;91(22): [PMID: 28855247]
  46. Elife. 2018 Feb 16;7: [PMID: 29451494]
  47. mBio. 2020 Jan 14;11(1): [PMID: 31937643]
  48. Annu Rev Virol. 2019 Sep 29;6(1):177-197 [PMID: 31283442]
  49. Cell Rep. 2019 Dec 17;29(12):3785-3795.e8 [PMID: 31851912]
  50. J Cell Biol. 2002 Sep 16;158(6):1119-31 [PMID: 12221069]
  51. J Virol. 2013 Jul;87(14):8064-74 [PMID: 23678180]
  52. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13699-13707 [PMID: 32467158]
  53. J Virol. 2016 Mar 28;90(8):3802-3805 [PMID: 26842477]
  54. Genes (Basel). 2020 Aug 14;11(8): [PMID: 32823838]
  55. J Virol. 2017 May 12;91(11): [PMID: 28298601]
  56. Cells. 2015 Jul 28;4(3):277-96 [PMID: 26226003]
  57. PLoS Biol. 2012 Jan;10(1):e1001249 [PMID: 22291574]
  58. PLoS Pathog. 2016 Jan 25;12(1):e1005415 [PMID: 26809031]
  59. J Virol. 2013 Mar;87(6):3155-62 [PMID: 23283949]
  60. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9610-9615 [PMID: 30181264]
  61. Cell. 2021 Jan 7;184(1):76-91.e13 [PMID: 33147444]
  62. Curr HIV/AIDS Rep. 2018 Feb;15(1):39-48 [PMID: 29374858]
  63. J Virol. 2019 May 15;93(11): [PMID: 30867305]
  64. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4620-4 [PMID: 15070767]
  65. NAR Genom Bioinform. 2020 Aug 18;2(3):lqaa059 [PMID: 33575610]
  66. J Cell Sci. 2017 Jul 1;130(13):2185-2195 [PMID: 28515232]
  67. Annu Rev Immunol. 2006;24:353-89 [PMID: 16551253]
  68. Cell Host Microbe. 2017 Aug 9;22(2):176-184 [PMID: 28799903]
  69. Traffic. 2016 Jun;17(6):569-92 [PMID: 26875443]
  70. Nat Microbiol. 2019 Apr;4(4):578-586 [PMID: 30692667]
  71. Viruses. 2018 Mar 31;10(4): [PMID: 29614729]
  72. Virol J. 2009 Oct 27;6:174 [PMID: 19860872]
  73. iScience. 2021 Mar 09;24(4):102291 [PMID: 33889814]
  74. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32601166]
  75. Nat Methods. 2013 Nov;10(11):1127-33 [PMID: 24097269]
  76. Cell. 2020 Dec 23;183(7):1930-1945.e23 [PMID: 33188777]
  77. Front Immunol. 2022 Oct 04;13:978824 [PMID: 36268025]
  78. mSphere. 2018 Nov 21;3(6): [PMID: 30463927]
  79. Annu Rev Virol. 2020 Sep 29;7(1):333-350 [PMID: 32991268]
  80. J Virol. 2011 Jan;85(1):481-96 [PMID: 21047958]
  81. Cell. 2019 Mar 7;176(6):1502-1515.e10 [PMID: 30799036]
  82. J Virol. 2002 Jun;76(11):5532-9 [PMID: 11991981]
  83. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16854-9 [PMID: 25385602]
  84. Front Genet. 2019 Apr 05;10:317 [PMID: 31024627]
  85. Cell. 2014 Oct 23;159(3):635-46 [PMID: 25307933]
  86. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2577-2582 [PMID: 30626642]
  87. PLoS Pathog. 2017 Jun 19;13(6):e1006455 [PMID: 28628648]
  88. Nat Rev Microbiol. 2015 Jan;13(1):28-41 [PMID: 25417656]
  89. Cell Host Microbe. 2011 Sep 15;10(3):210-23 [PMID: 21925109]
  90. Viruses. 2014 Nov 21;6(11):4536-70 [PMID: 25421887]
  91. Virology. 2010 Nov 25;407(2):247-55 [PMID: 20833406]
  92. EMBO J. 1997 Oct 1;16(19):5998-6007 [PMID: 9312057]
  93. Curr Opin Infect Dis. 2018 Jun;31(3):251-256 [PMID: 29601326]
  94. J Virol. 2015 Sep;89(18):9653-64 [PMID: 26178997]
  95. J Virol Methods. 2009 Aug;159(2):251-8 [PMID: 19406166]
  96. PLoS One. 2015 Sep 28;10(9):e0138760 [PMID: 26413745]
  97. Rev Med Virol. 1998 Oct;8(4):213-222 [PMID: 10398510]
  98. J Virol. 2019 Sep 30;93(20): [PMID: 31375585]
  99. Cell Host Microbe. 2013 Oct 16;14(4):468-80 [PMID: 24139403]
  100. J Gen Virol. 2021 Mar;102(3): [PMID: 33560198]
  101. Annu Rev Virol. 2019 Sep 29;6(1):567-584 [PMID: 31283436]
  102. PLoS Pathog. 2020 Feb 26;16(2):e1008334 [PMID: 32101596]
  103. PLoS Biol. 2021 Mar 17;19(3):e3001143 [PMID: 33730024]
  104. J Virol. 2014 Nov;88(22):13086-98 [PMID: 25187554]
  105. Elife. 2018 Feb 16;7: [PMID: 29451492]
  106. J Virol. 2019 Jun 28;93(14): [PMID: 31068418]
  107. Development. 2018 Jun 26;145(12): [PMID: 29945986]
  108. Front Microbiol. 2016 Sep 23;7:1503 [PMID: 27721809]
  109. Annu Rev Virol. 2020 Sep 29;7(1):167-187 [PMID: 32453972]
  110. PLoS Pathog. 2017 Apr 27;13(4):e1006320 [PMID: 28448571]
  111. Science. 2021 Jan 29;371(6528): [PMID: 33509999]
  112. Nat Methods. 2021 Jan;18(1):15-18 [PMID: 33408402]
  113. Proteomics. 2020 Jul;20(13):e1900271 [PMID: 32223079]
  114. EMBO J. 1996 Apr 15;15(8):1766-77 [PMID: 8617221]
  115. Viruses. 2018 Apr 18;10(4): [PMID: 29670029]
  116. Exp Mol Med. 2018 Aug 7;50(8):1-14 [PMID: 30089861]
  117. Integr Biol (Camb). 2017 Nov 13;9(11):857-867 [PMID: 29098213]
  118. Wiley Interdiscip Rev RNA. 2021 Jan;12(1):e1619 [PMID: 32757266]
  119. J Virol. 2005 Feb;79(4):2604-13 [PMID: 15681460]
  120. PLoS Pathog. 2013;9(5):e1003358 [PMID: 23671419]
  121. Nat Immunol. 2020 Jan;21(1):17-29 [PMID: 31819255]
  122. Eur Respir J. 2015 May;45(5):1463-78 [PMID: 25792631]
  123. PLoS Pathog. 2020 Nov 4;16(11):e1009029 [PMID: 33147296]
  124. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  125. Nat Rev Genet. 2009 Aug;10(8):540-50 [PMID: 19564871]
  126. Cell Host Microbe. 2015 Jul 8;18(1):75-85 [PMID: 26159720]
  127. PLoS Pathog. 2020 Jul 2;16(7):e1008671 [PMID: 32614923]
  128. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16303-8 [PMID: 20805493]
  129. Nature. 2017 Jun 15;546(7658):431-435 [PMID: 28607484]
  130. Nat Methods. 2009 May;6(5):331-8 [PMID: 19404252]
  131. Nat Commun. 2020 Apr 24;11(1):1997 [PMID: 32332742]
  132. Virus Res. 2015 Nov 2;209:11-22 [PMID: 25678267]
  133. Chem Rev. 2020 Feb 12;120(3):1936-1979 [PMID: 31951121]
  134. Curr Opin Virol. 2018 Apr;29:39-50 [PMID: 29558678]
  135. J Virol. 2019 May 15;93(11): [PMID: 30867313]
  136. EMBO Rep. 2002 May;3(5):410-4 [PMID: 11991944]
  137. Nat Methods. 2019 Sep;16(9):862-865 [PMID: 31471614]
  138. Cell Rep. 2017 Nov 7;21(6):1692-1704 [PMID: 29117571]
  139. Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17399-17408 [PMID: 31391303]
  140. Nat Rev Immunol. 2020 Sep;20(9):537-551 [PMID: 32203325]
  141. Trends Microbiol. 2020 Jul;28(7):554-565 [PMID: 32544442]
  142. Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12363-E12369 [PMID: 30530648]
  143. J Virol. 2012 Sep;86(18):10123-37 [PMID: 22787215]

MeSH Term

Animals
Click Chemistry
Genome, Viral
Humans
Immunity, Innate
In Situ Hybridization, Fluorescence
Mice
Single-Cell Analysis
Virion
Virus Diseases
Virus Physiological Phenomena
Virus Replication
Viruses

Word Cloud

Created with Highcharts 10.0.0variabilityinfectionviruscellsingle-cellyetmechanismsreviewscRNA-seqsituhybridizationclickdissectscRNA-FISHsingleinfluenzainfectionsCell-to-celllongknownremainedoneleastunderstoodphenomenaresearchimpactsdiseaseonsetdevelopmentrecentlyunderlyingstudiedclonalculturessingle-virionimmunofluorescencemicroscopyflowcytometryshowcaseRNAsequencingsingle-moleculeRNA-fluorescenceFISHcopper-catalyzedazide-alkynecycloadditionalkynyl-taggedviralgenomeshumanmousecellsshowcombineduseclick-chemistryrevealshighlyvariableonsetsadenoviralgeneexpressionliveplaquesreveallyticnonlyticadenovirustransmissionshighlightsprofilingcoxsackiedenguezikaherpessimplexuncovertranscriptionalhostinterferonresponsetunessendaiintroduceconcept"cellstate"concludeadvancessimultaneousmeasurementschromatinaccessibilitymRNAcountshigh-throughputtechnologywillsequenceeventspathologybettercharacterizegeneticgenomicstabilityvirusesautonomousinnateimmuneresponsestissueinjuryVirusInfectionVariabilitySingle-CellProfilingRNAseqassemblystatecell-to-cellchemistryegressnon-geneticpersistencelysisreplicationtranscriptfluorescencetranscriptionentryimaging

Similar Articles

Cited By