Methods to Study the Unique SOCS Box Domain of the Rab40 Small GTPase Subfamily.

Emily D Duncan, Ezra Lencer, Erik Linklater, Rytis Prekeris
Author Information
  1. Emily D Duncan: Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
  2. Ezra Lencer: Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
  3. Erik Linklater: Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
  4. Rytis Prekeris: Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. rytis.prekeris@cuanschutz.edu.

Abstract

Despite the critical role of Rab GTPases for intracellular transport, the vast majority of proteins within this family remain poorly characterized, including the Rab40 subfamily. Often recognized as atypical Rabs, the Rab40 family of proteins are unlike any other small GTPase because they contain a C-terminal suppressor of cytokine signaling (SOCS) box. It is well established that this SOCS domain in other proteins mediates an interaction with the scaffold protein Cullin5 in order to form a E3 ubiquitin ligase complex critical for protein ubiquitylation and turnover. Although the function of SOCS/Cullin5 complexes has been well defined in several of these other proteins, this is not yet the case for the Rab40 family of proteins. We have previously shown that the Rab40b family member plays an important role during three-dimensional (3D) breast cancer cell migration. To further this knowledge, we began to investigate the SOCS-dependent role of Rab40b during cell migration. Here, we describe an unbiased approach to identify potential Rab40b/Cullin5 substrates. We anticipate that this method will be useful for studying the function of other Rab40 family members as well as other SOCS box containing proteins.

Keywords

References

  1. Small GTPases. 2018 Mar 4;9(1-2):22-48 [PMID: 28632484]
  2. Eur J Pediatr. 2015 May;174(5):693-6 [PMID: 25370018]
  3. J Cell Biol. 2015 Nov 23;211(4):863-79 [PMID: 26598620]
  4. EMBO J. 2007 Aug 8;26(15):3592-606 [PMID: 17627283]
  5. Hum Mutat. 2014 Oct;35(10):1171-4 [PMID: 25044830]
  6. Cell Div. 2016 Mar 09;11:1 [PMID: 27030794]
  7. IUBMB Life. 2012 Apr;64(4):316-23 [PMID: 22362562]
  8. Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 [PMID: 11252952]
  9. Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1587-97 [PMID: 23897481]
  10. Genes Dev. 2004 Dec 15;18(24):3055-65 [PMID: 15601820]
  11. Nat Rev Mol Cell Biol. 2005 Jan;6(1):9-20 [PMID: 15688063]
  12. Bioessays. 2003 Nov;25(11):1129-38 [PMID: 14579253]
  13. Trends Biochem Sci. 2002 May;27(5):235-41 [PMID: 12076535]
  14. Mol Biol Evol. 2016 Jul;33(7):1833-42 [PMID: 27034425]
  15. Cell Mol Life Sci. 2019 Oct;76(20):4117-4130 [PMID: 31028425]
  16. J Cell Sci. 2013 Oct 15;126(Pt 20):4647-58 [PMID: 23902685]
  17. J Neurosci Res. 2004 Jun 15;76(6):758-70 [PMID: 15160388]
  18. PLoS One. 2013 Apr 30;8(4):e63213 [PMID: 23638186]
  19. Nature. 2007 Jun 7;447(7145):714-9 [PMID: 17554307]
  20. J Med Genet. 2012 May;49(5):332-40 [PMID: 22581972]
  21. J Mol Biol. 2000 Aug 25;301(4):1077-87 [PMID: 10966806]
  22. Biol Open. 2015 Feb 06;4(3):267-75 [PMID: 25661869]
  23. J Cell Sci. 2007 Nov 15;120(Pt 22):3905-10 [PMID: 17989088]
  24. J Cell Sci. 2016 Dec 1;129(23):4341-4353 [PMID: 27789576]
  25. Genes Dev. 1998 Dec 15;12(24):3872-81 [PMID: 9869640]
  26. Nat Methods. 2013 Aug;10(8):730-6 [PMID: 23921808]
  27. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11821-7 [PMID: 16882731]
  28. Cell Mol Life Sci. 1999 Sep;55(12):1568-77 [PMID: 10526574]
  29. Genome Biol. 2001;2(5):REVIEWS3007 [PMID: 11387043]
  30. J Biol Chem. 2008 Mar 21;283(12):8005-13 [PMID: 18187417]
  31. Trends Cell Biol. 2001 Dec;11(12):487-91 [PMID: 11719054]
  32. Physiol Rev. 2011 Jan;91(1):119-49 [PMID: 21248164]
  33. BMC Biol. 2012 Aug 08;10:71 [PMID: 22873208]
  34. Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25 [PMID: 19603039]
  35. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):114-9 [PMID: 9419338]
  36. J Mol Biol. 2001 Nov 2;313(4):889-901 [PMID: 11697911]

Grants

  1. R01 GM122768/NIGMS NIH HHS
  2. T32 CA174648/NCI NIH HHS
  3. T32 GM008730/NIGMS NIH HHS
  4. T32 GM136444/NIGMS NIH HHS

MeSH Term

Amino Acid Sequence
Monomeric GTP-Binding Proteins
Suppressor of Cytokine Signaling Proteins
Transcription Factors
Ubiquitin-Protein Ligases
Ubiquitination

Chemicals

Suppressor of Cytokine Signaling Proteins
Transcription Factors
Ubiquitin-Protein Ligases
Monomeric GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0proteinsfamilyRab40SOCSroleGTPaseboxwellRab40bcriticalRabproteinCullin5functioncellmigrationDespiteGTPasesintracellulartransportvastmajoritywithinremainpoorlycharacterizedincludingsubfamilyOftenrecognizedatypicalRabsunlikesmallcontainC-terminalsuppressorcytokinesignalingestablisheddomainmediatesinteractionscaffoldorderformE3ubiquitinligasecomplexubiquitylationturnoverAlthoughSOCS/Cullin5complexesdefinedseveralyetcasepreviouslyshownmemberplaysimportantthree-dimensional3DbreastcancerknowledgebeganinvestigateSOCS-dependentdescribeunbiasedapproachidentifypotentialRab40b/Cullin5substratesanticipatemethodwillusefulstudyingmemberscontainingMethodsStudyUniqueBoxDomainSmallSubfamilyEvolutionImmunoprecipitationMassspectrometryProteomicsUbiquitylation

Similar Articles

Cited By