Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway.

Luke J Stevenson, Joe Bracegirdle, Liwei Liu, Abigail V Sharrock, David F Ackerley, Robert A Keyzers, Jeremy G Owen
Author Information
  1. Luke J Stevenson: School of Biological Sciences, Victoria University of Wellington Wellington New Zealand jeremy.owen@vuw.ac.nz. ORCID
  2. Joe Bracegirdle: Maurice Wilkins Centre for Molecular Biodiscovery New Zealand. ORCID
  3. Liwei Liu: School of Biological Sciences, Victoria University of Wellington Wellington New Zealand jeremy.owen@vuw.ac.nz.
  4. Abigail V Sharrock: School of Biological Sciences, Victoria University of Wellington Wellington New Zealand jeremy.owen@vuw.ac.nz. ORCID
  5. David F Ackerley: School of Biological Sciences, Victoria University of Wellington Wellington New Zealand jeremy.owen@vuw.ac.nz. ORCID
  6. Robert A Keyzers: Maurice Wilkins Centre for Molecular Biodiscovery New Zealand. ORCID
  7. Jeremy G Owen: School of Biological Sciences, Victoria University of Wellington Wellington New Zealand jeremy.owen@vuw.ac.nz. ORCID

Abstract

Bacterial natural products have been a rich source of bioactive compounds for drug development, and advances in DNA sequencing, informatics and molecular biology have opened new avenues for their discovery. Here, we describe the isolation of an aureolic acid biosynthetic gene cluster from a metagenome library derived from a New Zealand soil sample. Heterologous expression of this pathway in resulted in the production and isolation of two new aureolic acid compounds, one of which (metathramycin, ) possesses potent bioactivity against a human colon carcinoma cell line (HCT-116, IC = 14.6 nM). As metathramycin was a minor constituent of the fermentation extract, its discovery relied on a combination of approaches including bioactivity guided fractionation, MS/MS characterisation and pathway engineering. This study not only demonstrates the presence of previously uncharacterised aureolic acids in the environment, but also the value of an integrated natural product discovery approach which may be generally applicable to low abundance bioactive metabolites.

References

  1. J Med Chem. 2012 Jun 28;55(12):5813-25 [PMID: 22578073]
  2. Protein Eng Des Sel. 2014 Oct;27(10):399-403 [PMID: 24996412]
  3. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):129-41 [PMID: 26586404]
  4. J Nat Prod. 2008 Feb;71(2):199-207 [PMID: 18197601]
  5. Nat Chem. 2019 Oct;11(10):931-939 [PMID: 31501509]
  6. J Am Chem Soc. 2014 Dec 31;136(52):18111-9 [PMID: 25521786]
  7. J Bacteriol. 2003 Jul;185(13):3962-5 [PMID: 12813091]
  8. J Nat Prod. 2002 Aug;65(8):1091-5 [PMID: 12193009]
  9. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4221-6 [PMID: 25831524]
  10. Chem Biol. 2004 Jan;11(1):21-32 [PMID: 15112992]
  11. Nat Protoc. 2007;2(5):1297-305 [PMID: 17546026]
  12. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  13. J Nat Prod. 2016 Mar 25;79(3):629-61 [PMID: 26852623]
  14. Nat Microbiol. 2018 Apr;3(4):415-422 [PMID: 29434326]
  15. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  16. J Am Chem Soc. 2005 Dec 21;127(50):17594-5 [PMID: 16351075]
  17. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14031-5 [PMID: 15377796]
  18. Nucleic Acids Res. 2003 Mar 15;31(6):e29 [PMID: 12626728]
  19. Folia Microbiol (Praha). 1974;19(6):498-506 [PMID: 4279874]
  20. Science. 2019 Dec 13;366(6471): [PMID: 31582523]
  21. J Am Chem Soc. 2003 May 14;125(19):5745-53 [PMID: 12733914]
  22. ACS Chem Biol. 2019 Oct 18;14(10):2115-2126 [PMID: 31508935]
  23. J Ind Microbiol Biotechnol. 2017 Feb;44(2):285-293 [PMID: 27885438]
  24. Antibiotiki. 1962 Mar;7:39-44 [PMID: 13872681]
  25. J Bacteriol. 1999 Jan;181(2):642-7 [PMID: 9882681]
  26. Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11063-7 [PMID: 24038656]
  27. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  28. J Am Chem Soc. 2018 Aug 29;140(34):10775-10784 [PMID: 30085661]
  29. Biopolymers. 2010 Sep;93(9):833-44 [PMID: 20577994]
  30. Methods Enzymol. 2012;517:225-39 [PMID: 23084941]
  31. J Nat Prod. 1999 Jan;62(1):119-21 [PMID: 9917296]
  32. J Antibiot (Tokyo). 1998 Mar;51(3):261-6 [PMID: 9589060]
  33. Appl Microbiol Biotechnol. 2006 Nov;73(1):1-14 [PMID: 17013601]
  34. J Comput Biol. 2013 Oct;20(10):714-37 [PMID: 24093227]
  35. ACS Synth Biol. 2016 Sep 16;5(9):1002-10 [PMID: 27197732]
  36. FEMS Microbiol Lett. 2000 May 1;186(1):61-5 [PMID: 10779713]
  37. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12629-34 [PMID: 21768346]
  38. Mol Gen Genet. 1996 Jul 26;251(6):692-8 [PMID: 8757400]
  39. Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41 [PMID: 28460038]
  40. Microbiology (Reading). 2007 Sep;153(Pt 9):3061-3070 [PMID: 17768249]
  41. Chem Biol. 1999 Jan;6(1):19-30 [PMID: 9889148]
  42. Planta Med. 2015 Oct;81(15):1326-38 [PMID: 26393942]
  43. FEMS Microbiol Lett. 1999 Nov 1;180(1):1-6 [PMID: 10547437]
  44. Nat Prod Rep. 2019 Sep 1;36(9):1313-1332 [PMID: 31197291]

Word Cloud

Created with Highcharts 10.0.0aureolicbioactivenewdiscoveryacidpathwaynaturalcompoundsisolationbiosyntheticmetagenomederivedexpressionmetathramycinbioactivityBacterialproductsrichsourcedrugdevelopmentadvancesDNAsequencinginformaticsmolecularbiologyopenedavenuesdescribegeneclusterlibraryNewZealandsoilsampleHeterologousresultedproductiontwoonepossessespotenthumancoloncarcinomacelllineHCT-116IC=146nMminorconstituentfermentationextractreliedcombinationapproachesincludingguidedfractionationMS/MScharacterisationengineeringstudydemonstratespresencepreviouslyuncharacterisedacidsenvironmentalsovalueintegratedproductapproachmaygenerallyapplicablelowabundancemetabolitesMetathramycindiscoveredheterologous

Similar Articles

Cited By (8)