Synthetic dual-function RNA reveals features necessary for target regulation.

Jordan J Aoyama, Medha Raina, Gisela Storz
Author Information
  1. Jordan J Aoyama: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
  2. Medha Raina: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
  3. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.

Abstract

Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and synthesis of a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be designed to maximize their regulatory impact. Dual-function RNAs in bacteria encode a small protein and also base pair with mRNAs to act as small, regulatory RNAs. Given that only a limited number of dual-function RNAs have been characterized, further study of these regulators is needed to increase understanding of their features. This study demonstrates that a functional synthetic dual-regulator can be constructed from separate components and used to study the functional organization of dual-function RNAs, with the goal of exploiting these regulators.

References

  1. Cell. 2005 Jan 14;120(1):49-58 [PMID: 15652481]
  2. Adv Genet. 2015;90:133-208 [PMID: 26296935]
  3. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  4. Annu Rev Microbiol. 2018 Sep 08;72:141-161 [PMID: 30200848]
  5. Mol Microbiol. 2003 Nov;50(4):1111-24 [PMID: 14622403]
  6. J Bacteriol. 2017 May 9;199(11): [PMID: 28289086]
  7. Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2117930119 [PMID: 35239434]
  8. Front Cell Infect Microbiol. 2019 Jun 12;9:201 [PMID: 31249814]
  9. J Bacteriol. 2013 Oct;195(20):4620-30 [PMID: 23935052]
  10. Biochim Biophys Acta Gene Regul Mech. 2020 Jul;1863(7):194524 [PMID: 32147527]
  11. Annu Rev Biophys. 2017 May 22;46:131-148 [PMID: 28532217]
  12. J Bacteriol. 2010 Jan;192(1):46-58 [PMID: 19734316]
  13. Microbiol Spectr. 2018 Apr;6(2): [PMID: 29623872]
  14. J Bacteriol. 2017 May 9;199(11): [PMID: 28289085]
  15. Peptides. 2009 Apr;30(4):817-23 [PMID: 19150639]
  16. Mol Cell. 2018 Jun 7;70(5):785-799 [PMID: 29358079]
  17. Cell Microbiol. 2008 Mar;10(3):576-82 [PMID: 18182085]
  18. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  19. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  20. Microbiol Spectr. 2018 Jul;6(4): [PMID: 30051798]
  21. RNA. 2018 Dec;24(12):1761-1784 [PMID: 30217864]
  22. Curr Opin Microbiol. 2016 Apr;30:133-138 [PMID: 26907610]
  23. Mol Microbiol. 2004 Nov;54(4):1076-89 [PMID: 15522088]
  24. Nucleic Acids Res. 2009 Sep;37(16):5465-76 [PMID: 19531735]
  25. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 [PMID: 18042713]
  26. Microbiol Spectr. 2018 Sep;6(5): [PMID: 30191807]
  27. Mol Microbiol. 2009 Dec;74(6):1314-30 [PMID: 19889087]
  28. J Biol Chem. 1971 May 10;246(9):3042-9 [PMID: 4928897]
  29. Nucleic Acids Res. 2011 May;39(9):3806-19 [PMID: 21245045]
  30. Genes Dev. 2001 Jul 1;15(13):1637-51 [PMID: 11445539]
  31. Biosystems. 2002 Mar-May;65(2-3):157-77 [PMID: 12069726]

Grants

  1. ZIA HD001608/Intramural NIH HHS
  2. ZIA HD008855/Intramural NIH HHS

Word Cloud

Created with Highcharts 10.0.0RNAsdual-functionsmallbasesyntheticpairingencodingregulatoryproteintworegulatorsactivitiesMgrRMgtSRNAfeaturesstudylimitednumberregulationGivencharacterizedconstructedsRNAMgseparateorganizationcomponentsunderstandingcanfunctionalSmallsRNAsproteinscompriseclassesallowbacterialcellsadaptwidevarietygrowthconditionstranscriptsmRNAexpressionsynthesisidentifiedlittleknowninterplayfunctionsinvestigatecompetitionhereafterreferredMgtSRMgtRScomprisedopenreadingframe98ntnegativelyregulatesphosphoethanolaminetransferase31aainnermembranerequiredaccumulationMgtAmagnesiumimporterExpressiongenesnormallyinducedresponselowPhoQPtwo-componentsystemgeneratingvariousversionsprobeddistancecodingsequencescontributeproperfunctionnaturalfuturemoleculesdesignedmaximizeimpactDual-functionbacteriaencodealsopairmRNAsactneededincreasedemonstratesdual-regulatorusedgoalexploitingSyntheticrevealsnecessarytarget

Similar Articles

Cited By