Deep Learning in Selected Cancers' Image Analysis-A Survey.

Taye Girma Debelee, Samuel Rahimeto Kebede, Friedhelm Schwenker, Zemene Matewos Shewarega
Author Information
  1. Taye Girma Debelee: Artificial Intelligence Center, 40782 Addis Ababa, Ethiopia. ORCID
  2. Samuel Rahimeto Kebede: Artificial Intelligence Center, 40782 Addis Ababa, Ethiopia. ORCID
  3. Friedhelm Schwenker: Institute of Neural Information Processing, University of Ulm, 89081 Ulm, Germany. ORCID
  4. Zemene Matewos Shewarega: Artificial Intelligence Center, 40782 Addis Ababa, Ethiopia.

Abstract

Deep learning algorithms have become the first choice as an approach to medical image analysis, face recognition, and emotion recognition. In this survey, several deep-learning-based approaches applied to breast cancer, cervical cancer, brain tumor, colon and lung Cancers are studied and reviewed. Deep learning has been applied in almost all of the imaging modalities used for cervical and breast Cancers and MRIs for the brain tumor. The result of the review process indicated that deep learning methods have achieved state-of-the-art in tumor detection, segmentation, feature extraction and classification. As presented in this paper, the deep learning approaches were used in three different modes that include training from scratch, transfer learning through freezing some layers of the deep learning network and modifying the architecture to reduce the number of parameters existing in the network. Moreover, the application of deep learning to imaging devices for the detection of various cancer cases has been studied by researchers affiliated to academic and medical institutes in economically developed countries; while, the study has not had much attention in Africa despite the dramatic soar of cancer risks in the continent.

Keywords

References

  1. Int J Cancer. 2008 Mar 15;122(6):1357-67 [PMID: 18033685]
  2. J Biomed Inform. 2020 Sep;109:103523 [PMID: 32758538]
  3. J Neurooncol. 2017 Dec;135(3):571-579 [PMID: 28861666]
  4. Comput Biol Med. 2011 Oct;41(10):960-70 [PMID: 21890126]
  5. IEEE Trans Med Imaging. 2019 May;38(5):1139-1149 [PMID: 30403624]
  6. Med Image Anal. 2017 Dec;42:60-88 [PMID: 28778026]
  7. Sci Rep. 2016 Jun 16;6:27988 [PMID: 27306927]
  8. Front Bioeng Biotechnol. 2019 Mar 27;7:52 [PMID: 30972333]
  9. Cancers (Basel). 2019 Jan 18;11(1): [PMID: 30669406]
  10. Med Phys. 2006 Oct;33(10):3814-24 [PMID: 17089846]
  11. IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194 [PMID: 31603772]
  12. Radiol Phys Technol. 2017 Sep;10(3):257-273 [PMID: 28689314]
  13. Medicina (Kaunas). 2019 Aug 12;55(8): [PMID: 31409050]
  14. Therap Adv Gastroenterol. 2020 Mar 20;13:1756284820910659 [PMID: 32231710]
  15. Med Image Anal. 2019 Feb;52:199-211 [PMID: 30594772]
  16. Cancers (Basel). 2020 Jul 24;12(8): [PMID: 32722111]
  17. IEEE Trans Med Imaging. 2020 May;39(5):1419-1429 [PMID: 31675322]
  18. Diagnostics (Basel). 2020 Jan 14;10(1): [PMID: 31947707]
  19. J Magn Reson Imaging. 2019 Oct;50(4):1144-1151 [PMID: 30924997]
  20. Radiology. 2020 Feb;294(2):265-272 [PMID: 31845842]
  21. Brain Sci. 2020 Feb 22;10(2): [PMID: 32098333]
  22. Neuroimage. 2009 Apr 1;45(2):431-9 [PMID: 19073267]
  23. Comput Biol Med. 2019 Dec;115:103498 [PMID: 31698241]
  24. Med Image Anal. 2019 Aug;56:122-139 [PMID: 31226662]
  25. Med Phys. 2003 Jul;30(7):1602-17 [PMID: 12906178]
  26. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248 [PMID: 28301734]
  27. Cancer Cytopathol. 2015 May;123(5):271-81 [PMID: 25931431]
  28. Cancer Res. 2014 Sep 1;74(17):4622-4637 [PMID: 25183787]
  29. Eur Radiol. 2020 Feb;30(2):778-788 [PMID: 31691121]
  30. Korean J Radiol. 2017 Jul-Aug;18(4):570-584 [PMID: 28670152]
  31. IEEE J Biomed Health Inform. 2017 Nov;21(6):1633-1643 [PMID: 28541229]
  32. J Healthc Eng. 2017;2017:4037190 [PMID: 29065595]
  33. J Digit Imaging. 2020 Jun;33(3):632-654 [PMID: 31900812]
  34. Med Image Anal. 2018 Jan;43:98-111 [PMID: 29040911]
  35. Surg Endosc. 2019 Nov;33(11):3790-3797 [PMID: 30719560]
  36. IEEE Trans Med Imaging. 2005 Sep;24(9):1138-50 [PMID: 16156352]
  37. IEEE Trans Biomed Eng. 2019 Sep;66(9):2447-2456 [PMID: 30605087]
  38. Int J Biomed Imaging. 2017;2017:9749108 [PMID: 28367213]
  39. Br J Radiol. 2011 Dec;84 Spec No 2:S82-9 [PMID: 22433832]
  40. Int J Cancer. 2010 Dec 15;127(12):2893-917 [PMID: 21351269]
  41. IEEE Trans Med Imaging. 2013 Feb;32(2):474-83 [PMID: 23204283]
  42. Comput Med Imaging Graph. 2015 Jul;43:99-111 [PMID: 25863519]
  43. PeerJ. 2017 Oct 3;5:e3874 [PMID: 29018612]
  44. Asian Pac J Cancer Prev. ;18(1):3-9 [PMID: 28239999]
  45. Cancer. 2003 Jun 15;97(12 Suppl):3133-275 [PMID: 12784323]
  46. Diagnostics (Basel). 2020 Jul 03;10(7): [PMID: 32635269]
  47. Acad Radiol. 2012 Feb;19(2):236-48 [PMID: 22078258]
  48. Sensors (Basel). 2019 Feb 22;19(4): [PMID: 30813245]
  49. Acad Radiol. 2019 Nov;26(11):1526-1535 [PMID: 30713130]
  50. Gastrointest Endosc. 2016 Jul;84(1):18-28 [PMID: 26940296]
  51. IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024 [PMID: 25494501]
  52. J Natl Cancer Inst. 2000 Mar 1;92(5):397-402 [PMID: 10700419]
  53. Methods. 2020 Feb 15;173:52-60 [PMID: 31212016]
  54. J Digit Imaging. 2017 Aug;30(4):449-459 [PMID: 28577131]
  55. Front Neurosci. 2019 Aug 21;13:844 [PMID: 31496928]
  56. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:7044-7048 [PMID: 31947460]
  57. PLoS One. 2020 May 4;15(5):e0232127 [PMID: 32365142]
  58. J Digit Imaging. 2020 Aug;33(4):858-868 [PMID: 32206943]
  59. Eur Radiol. 2019 Jul;29(7):3338-3347 [PMID: 31016442]
  60. IEEE Trans Med Imaging. 2016 May;35(5):1196-1206 [PMID: 26863654]
  61. Endoscopy. 2019 Dec;51(12):1121-1129 [PMID: 31443108]
  62. Sci Rep. 2019 Aug 29;9(1):12495 [PMID: 31467326]
  63. JAMA. 2018 Nov 13;320(18):1938-1939 [PMID: 30422188]
  64. Int J Comput Assist Radiol Surg. 2020 Jun;15(6):909-920 [PMID: 32372386]
  65. Data Brief. 2020 Apr 22;30:105589 [PMID: 32368601]
  66. PLoS One. 2015 Oct 08;10(10):e0140381 [PMID: 26447861]
  67. Nat Rev Dis Primers. 2016 Dec 01;2:16086 [PMID: 27905473]
  68. IEEE J Biomed Health Inform. 2019 May;23(3):960-968 [PMID: 30418891]
  69. Comput Biol Med. 2018 Dec 1;103:220-231 [PMID: 30390571]
  70. Brain Inform. 2018 Mar;5(1):23-30 [PMID: 29313301]

Word Cloud

Created with Highcharts 10.0.0learningcancerdeeptumorDeepmedicalbreastcervicalbrainimageanalysisrecognitionapproachesappliedcolonlungcancersstudiedimaginguseddetectionnetworkalgorithmsbecomefirstchoiceapproachfaceemotionsurveyseveraldeep-learning-basedreviewedalmostmodalitiesMRIsresultreviewprocessindicatedmethodsachievedstate-of-the-artsegmentationfeatureextractionclassificationpresentedpaperthreedifferentmodesincludetrainingscratchtransferfreezinglayersmodifyingarchitecturereducenumberparametersexistingMoreoverapplicationdevicesvariouscasesresearchersaffiliatedacademicinstituteseconomicallydevelopedcountriesstudymuchattentionAfricadespitedramaticsoarriskscontinentLearningSelectedCancers'ImageAnalysis-ASurvey

Similar Articles

Cited By