Temporal Variability of Macroinvertebrate Assemblages in a Mediterranean Coastal Stream: Implications for Bioassessment.

Pablo Fierro, Robert M Hughes, Claudio Valdovinos
Author Information
  1. Pablo Fierro: Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile. pablo.fierro@uach.cl. ORCID
  2. Robert M Hughes: Amnis Opes Institute, Oregon, USA.
  3. Claudio Valdovinos: Depto de Sistemas Acuáticos, Facultad de Ciencias Ambientales, Universidad de Concepción, y Centro de Ciencias Ambientales EULA, Universidad de Concepción, Concepción, Chile.

Abstract

Macroinvertebrates from a small forest stream in central-south Chile were sampled monthly from September 2017 to August 2018 to assess temporal variability in the assemblage and the effects of that variability on ecological indicators. Higher precipitation and flows occurred in winter months, and water quality varied among months. We collected 59 macroinvertebrate taxa, finding higher taxa richness and abundances in summer months than in winter months. Four taxa demonstrated marked seasonality, being abundant in some months and then decreasing in following months (Limnoperla jaffueli (Navás), Nousia maculata (Demoulin), Smicridea sp. (McLachlan), Chironomidae spp.). The scores of the family Hilsenhoff Biotic Index (HBI), Hilsenhoff Species-level Biotic Index (HSBI), Multimetric Macroinvertebrate Index (MMI), and Chilean Biological Monitoring Working Party (ChBMWP) index varied throughout the year reflecting natural variability. However, only HBI and HSBI scores were significantly different among seasons, ranging across three water quality classes (excellent, very good, and good), showing the lowest water classes in spring, coinciding with higher abundances of tolerant species. The MMI and ChBMWP indicated good and very good site conditions throughout the year, respectively. Shannon-Weaver diversity ranged between 2.59 (April) and 1.78 (February); however, Pielou evenness had high values throughout the year (> 0.62), except in February. Changes in macroinvertebrates composition throughout the year were explained primarily by discharge, water temperature, and conductivity. Our findings indicate that natural monthly variability in macroinvertebrate assemblages influences the scores of biological indices throughout the year. Therefore, we recommend that natural stream variability be accounted for in biomonitoring programs. We also emphasize the need to use caution when interpreting biological index scores to avoid misinterpretations in stream quality classification.

Keywords

References

  1. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth
  2. Arriagada L, Rojas O, Arumí JL, Munizaga J, Rojas C, Farias L, Vega C (2019) A new method to evaluate the vulnerability of watersheds facing several stressors: a case study in Mediterranean Chile. Sci Total Environ 651:1517–1533. https://doi.org/10.1016/j.scitotenv.2018.09.237 [DOI: 10.1016/j.scitotenv.2018.09.237]
  3. Banegas-Medina A, Montes I-Y, Tzoraki O, Brendonck L, Pinceel T, Diaz G, Arriagada P, Arumi J-L, Pedreros P, Figueroa R (2021) Hydrological, environmental and taxonomical heterogeneity during the transition from drying to flowing conditions in a Mediterranean intermittent river. Biology 10:316. https://doi.org/10.3390/biology10040316 [DOI: 10.3390/biology10040316]
  4. Brito JG, Roque FO, Martins RT, Hamada N, Nessimian JL, Oliveira VC, Hughes RM, de Paula FR, Ferraz S (2020) Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biol Conserv 241:108263. https://doi.org/10.1016/j.biocon.2019.108263 [DOI: 10.1016/j.biocon.2019.108263]
  5. Buss DF, Carlisle D, Chon TS, Culp J, Harding JS, Keizer-Vlek HE, Robinson WA, Strachan S, Thirion C, Hughes RM (2015) Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ Monit Assess 187:1–21. https://doi.org/10.1007/s10661-014-4132-8 [DOI: 10.1007/s10661-014-4132-8]
  6. Chen K, Hughes RM, Xu S, Zhang J, Cai D, Wang B (2014) Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecol Indic 36:142–151. https://doi.org/10.1016/j.ecolind.2013.07.006 [DOI: 10.1016/j.ecolind.2013.07.006]
  7. Chen K, Rajper AR, Hughes RM, Olson JR, Wei H, Wang B (2019) Incorporating functional traits to enhance multimetric index performance and assess land use gradients. Sci Total Environ 691:1005–1015. https://doi.org/10.1016/j.scitotenv.2019.07.047 [DOI: 10.1016/j.scitotenv.2019.07.047]
  8. Cid N, Bonada N, Carlson SM, Grantham TE, Gasith A, Resh VH (2017) High variability is a defining component of Mediterranean-Climate rivers and heir biota. Water 9:52. https://doi.org/10.3390/w9010052 [DOI: 10.3390/w9010052]
  9. Colvin SAR, Sullivan SMP, Shirey PD, Colvin RW, Winemiller KO, Hughes RM, Fausch KD, Infante DM, Olden JD, Bestgen KR, Danehy RJ, Eby L (2019) Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries 2:73–91. https://doi.org/10.1002/fsh.10229 [DOI: 10.1002/fsh.10229]
  10. De Oliveira-Junior JMB, de Marco-Junior P, Dias-Silva K, Leitão RP, Leal CG, Pompeu PS, Gardner TA, Hughes R, Juen L (2017) Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica 66:31–39. https://doi.org/10.1016/j.limno.2017.04.007 [DOI: 10.1016/j.limno.2017.04.007]
  11. Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos: sistemática y biología (p. 656). Fundación Miguel Lillo, Tucumán
  12. Feio MJ, Reynoldson TB, Graça MA (2006) Effect of seasonal changes on predictive model assessments of streams water quality with macroinvertebrates. Int Rev Hydrobiol 91:509–520. https://doi.org/10.1002/iroh.200610877 [DOI: 10.1002/iroh.200610877]
  13. Fierro P, Bertrán C, Mercado M, Peña-Cortés F, Tapia J, Hauenstein E, Vargas-Chacoff L (2012) Benthic macroinvertebrate assemblages as indicators of water quality applying a modified biotic index in a spatio-seasonal context in a coastal basin of southern Chile. Rev Biol Mar Oceanogr 47:23–33. https://doi.org/10.4067/S0718-19572012000100003 [DOI: 10.4067/S0718-19572012000100003]
  14. Fierro P, Bertrán C, Tapia J, Hauenstein E, Peña-Cortés F, Vergara C, Cerna C, Vargas-Chacoff L (2017) Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci Total Environ 609:724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197 [DOI: 10.1016/j.scitotenv.2017.07.197]
  15. Fierro P, Arismendi I, Hughes RM, Valdovinos C, Jara-Flores A (2018) A benthic macroinvertebrate multimetric index for Chilean Mediterranean streams. Ecol Indic 91:13–23. https://doi.org/10.1016/j.ecolind.2018.03.074 [DOI: 10.1016/j.ecolind.2018.03.074]
  16. Fierro P, Valdovinos C, Arismendi I, Díaz G, Jara-Flores A, Habit E, Vargas-Chacoff L (2019) Examining the influence of human stressors on benthic algae, macroinvertebrate, and fish assemblages in Mediterranean streams of Chile. Sci Total Environ 686:26–37. https://doi.org/10.1016/j.scitotenv.2019.05.277 [DOI: 10.1016/j.scitotenv.2019.05.277]
  17. Fierro P, Ferrú M, Lara C (2020) Effects of forest conversion on the aquatic Coleoptera assemblage in Mediterranean-climate streams. Ecol Indic 111:106043. https://doi.org/10.1016/j.ecolind.2019.106043 [DOI: 10.1016/j.ecolind.2019.106043]
  18. Fierro P, Valdovinos C, Lara C, Saldías GS (2021) Influence of intensive agriculture on benthic macroinvertebrate assemblages and water quality in the Aconcagua River Basin (Central Chile). Water 13:492. https://doi.org/10.3390/w13040492 [DOI: 10.3390/w13040492]
  19. Figueroa R, Valdovinos C, Araya E, Parra O (2003) Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. Rev Chil Hist Nat 76:275–285. https://doi.org/10.4067/S0716-078X2003000200012 [DOI: 10.4067/S0716-078X2003000200012]
  20. Figueroa R, Ruíz V, Niell X, Araya E, Palma A (2006) Invertebrate colonization patterns in a Mediterranean Chilean stream. Hydrobiologia 571:409–417. https://doi.org/10.1007/s10750-006-0214-0 [DOI: 10.1007/s10750-006-0214-0]
  21. Figueroa R, Palma A, Ruiz V, Niel X (2007) Análisis comparativo de índices bióticos utilizados en la evaluación de la calidad de las aguas en un río mediterráneo de Chile: río Chillán, VIII Región. Rev Chil Hist Nat 80:225–242. https://doi.org/10.4067/S0716-078X2007000200008 [DOI: 10.4067/S0716-078X2007000200008]
  22. Florencio M, Serrano L, Gómez-Rodríguez C, Millán A, Díaz-Paniagua C (2009) Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634:167–183. https://doi.org/10.1007/s10750-009-9897-3 [DOI: 10.1007/s10750-009-9897-3]
  23. Gabriels W, Lock K, De Pauw N, Goethals PLM (2010) Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica 40:199–207. https://doi.org/10.1016/j.limno.2009.10.001 [DOI: 10.1016/j.limno.2009.10.001]
  24. Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. https://doi.org/10.1146/annurev.ecolsys.30.1.51 [DOI: 10.1146/annurev.ecolsys.30.1.51]
  25. Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ (2004) Stream hydrology: an introduction for ecologists. Wiley, England
  26. Gutiérrez-Fonseca PE, Ramírez A, Pringle CM, Torres PJ, McDowell WH, Covich A, Crowl T, Pérez-Reyes O (2020) When the rainforest dries: drought effects on a montane tropical stream ecosystem in Puerto Rico. Freshw Sci 39:197–212. https://doi.org/10.1086/708808 [DOI: 10.1086/708808]
  27. Habit E, Victoriano E, Rodríguez-Ruiz A (2003) Variaciones espacio-temporales del ensamble de peces de un Sistema fluvial de bajo orden del centro-sur de Chile. Rev Chil Hist Nat 76:3–14. https://doi.org/10.4067/S0716-078X2003000100001 [DOI: 10.4067/S0716-078X2003000100001]
  28. Hamada N, Thorp JH, Rogers DC (2018) Thorp and Covich́’s Freshwater Invertebrates, Fourth Edition: Keys to Neotropical Hexapoda, Volume Three. Academic Press
  29. Heip C (1974) A new Index measuring evenness. J Mar Biol Assoc UK 54:555–557 [DOI: 10.1017/S0025315400022736]
  30. Hering D, Feld CK, Moog O, Ofenböck T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324. https://doi.org/10.1007/s10750-006-0087-2 [DOI: 10.1007/s10750-006-0087-2]
  31. Herlihy AT, Sifneos JC, Hughes RM, Peck DV, Mitchell RM (2020) The relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecol Indic 112:105958. https://doi.org/10.1016/j.ecolind.2019.105958 [DOI: 10.1016/j.ecolind.2019.105958]
  32. Herman M, Nejadhashemi A (2015) A review of macroinvertebrate-and fish- based stream health indices. Ecohydrol Hydrobiol 15:53–67. https://doi.org/10.1016/j.ecohyd.2015.04.001 [DOI: 10.1016/j.ecohyd.2015.04.001]
  33. Hollmann MET, Miserendino ML (2008) Life history and emergence patterns of stonefly species in mountain streams of the Futaleufú basin, Patagonia (Argentina). Ann Limnol Int J Limnol 44:135–144. https://doi.org/10.1051/limn:2008014 [DOI: 10.1051/limn]
  34. Holomuzki JR, Biggs BJF (2000) Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. J N Am Benthol Soc 19:670–679. https://doi.org/10.2307/1468125 [DOI: 10.2307/1468125]
  35. Hughes RM, Peck DV (2008) Acquiring data for large aquatic resources surveys: the art of compromise among science, logistics, and reality. J N Am Benthol Soc 27:837–859. https://doi.org/10.1899/08-028.1 [DOI: 10.1899/08-028.1]
  36. Hughes RM, Larsen DP, Omernik JM (1986) Regional reference sites: a method for assessing stream potentials. Environ Manag 10:629–635. https://doi.org/10.1007/BF01866767 [DOI: 10.1007/BF01866767]
  37. Hughes RM, Kaufmann PR, Herlihy AT, Kincaid TM, Reynolds L, Larsen DP (1998) A process for developing and evaluating indices of fish assemblage integrity. Can J Fish Aquat Sci 55:1618–1631. https://doi.org/10.1139/f98-060 [DOI: 10.1139/f98-060]
  38. Hughes RM, Infante DM, Wang L, Chen K, Terra BF (2019) Advances in understanding landscape influences on freshwater habitats and biological assemblages. American Fisheries Society, Symposium 90, Bethesda, Maryland
  39. Hynes HBN (1971) The ecology of running waters. University of Toronto Press, Toronto
  40. Jaque-Castillo E (2010) Assessment of coastal Mediterranean landscapes in the Andalién river basin, Chile. Bol Asoc Geogr Esp 54:401–405
  41. Johnson RC, Carreiro MM, Jin H-S, Jack JD (2012) Within-year temporal variation and life-cycle seasonality affect stream macroinvertebrate community structure and biotic metrics. Ecol Indic 13:206–214. https://doi.org/10.1016/j.ecolind.2011.06.004 [DOI: 10.1016/j.ecolind.2011.06.004]
  42. Kappes H, Sundermann A, Haase P (2010) High spatial variability biases the space-for-time approach in environmental monitoring. Ecol Indic 10:1202–1205. https://doi.org/10.1016/j.ecolind.2010.03.012 [DOI: 10.1016/j.ecolind.2010.03.012]
  43. Kosnicki E, Sites RW (2011) Seasonal predictability of benthic macroinvertebrate metrics and community structure with maturity-weighted abundances in a Missouri Ozark stream, USA. Ecol Indic 11:704–714. https://doi.org/10.1016/j.ecolind.2010.04.008 [DOI: 10.1016/j.ecolind.2010.04.008]
  44. Leung ASL, Dudgeon D (2011) Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change. Freshw Biol 56:1193–1208. https://doi.org/10.1111/j.1365-2427.2010.02556.x [DOI: 10.1111/j.1365-2427.2010.02556.x]
  45. Ligeiro R, Hughes RM, Kaufmann PR, Macedo DR, Firmiano KR, Ferreira WR, Oliveira D, Melo AS, Callisto M (2013) Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol Indic 25:45–57. https://doi.org/10.1016/j.ecolind.2012.09.004 [DOI: 10.1016/j.ecolind.2012.09.004]
  46. Ligeiro R, Hughes RM, Kaufmann PR, Heino J, Melo AS, Callisto M (2020) Choice of field and laboratory methods affects the detection of anthropogenic disturbances using stream macroinvertebrate assemblages. Ecol Indic 115:106382. https://doi.org/10.1016/j.ecolind.2020.106382 [DOI: 10.1016/j.ecolind.2020.106382]
  47. Martins I, Rodrigues Macedo D, Hughes RM, Callisto M (2020) Are multiple multimetric indices effective for assessing ecological condition in tropical basins? Ecol Indic 110:105953. https://doi.org/10.1016/j.ecolind.2019.105953 [DOI: 10.1016/j.ecolind.2019.105953]
  48. Martins RT, Brito J, Dias-Silva K, Leal CG, Leitão RP, Oliveira VC, Oliveira-Júnior JMB, Ferraz SFB, de Paula FR, Roque FO, Hamada N, Juen L, Nessimian JL, Pompeu PS, Hughes RM (2021) Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecol Indic 127:107773.  https://doi.org/10.1016/j.ecolind.2021.107773
  49. Mazzorana B, Picco L, Rainato R, Iromé A, Ruiz-Villanueva V, Rojas C, Valdebenito G, Iribarren-Anacona P, Melnick D (2019) Cascading processes in a changing environment: disturbances on fluvial ecosystems in Chile and implications for hazard and risk management. Sci Total Environ 655:1089–1103. https://doi.org/10.1016/j.scitotenv.2018.11.217 [DOI: 10.1016/j.scitotenv.2018.11.217]
  50. Miserendino ML, Pizzolon LA (2003) Distribution of macroinvertebrate assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. New Zeal J Mar Fresh 37:525–539. https://doi.org/10.1080/00288330.2003.9517187 [DOI: 10.1080/00288330.2003.9517187]
  51. Moya N, Hughes RM, Dominguez E, Gibon F-M, Goita E, Oberdorff T (2011) Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecol Indic 11:840–847. https://doi.org/10.1016/j.ecolind.2010.10.012 [DOI: 10.1016/j.ecolind.2010.10.012]
  52. Novoa V, Rojas O, Ahumada-Rudolph R, Sáez K, Fierro P, Rojas C (2020) Coastal wetlands: ecosystems affected by urbanization. Water 12:698. https://doi.org/10.3390/w12030698 [DOI: 10.3390/w12030698]
  53. Palma A, Figueroa R, Ruiz VH (2009) Evaluacion de ribera y habitat fluvial a traves de los indices QBR e IHF. Gayana 73:57–63. https://doi.org/10.4067/S0717-65382009000100009 [DOI: 10.4067/S0717-65382009000100009]
  54. Pedreros P, Guevara-Mora M, Stehr A, Araneda A, Urrutia R (2020) Response of macroinvertebrate communities to thermal regime in small Mediterranean streams (southern South America): Implications of global warming. Limnologica 81:125763. https://doi.org/10.1016/j.limno.2020.125763 [DOI: 10.1016/j.limno.2020.125763]
  55. Peterson MG, Hunt L, Donley Marineau EE, Resh VH (2017) Long-term studies of seasonal variability enable evaluation of macroinvertebrate responses to an acute oil spill in an urban Mediterrranean-climate stream. Hydrobiologia 797:319–333. https://doi.org/10.1007/s10750-017-3194-3 [DOI: 10.1007/s10750-017-3194-3]
  56. R Core Team (2016) R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria URAL. https://www.R-project.org/
  57. Rein A, Hoffmann R, Dietrich P (2004) Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements. J Hydrol 285:215–232. https://doi.org/10.1016/j.jhydrol.2003.08.015 [DOI: 10.1016/j.jhydrol.2003.08.015]
  58. Rojas C, Munizaga J, Rojas O, Martínez C, Pino J (2019) Urban development versus wetland loss in a coastal Latin American city: lessons for sustainable land use planning. Land Use Policy 80:47–56. https://doi.org/10.1016/j.landusepol.2018.09.036 [DOI: 10.1016/j.landusepol.2018.09.036]
  59. Ruaro R, Gubiani EA, Hughes RM, Mormul RP (2020) Global trends and challenges in multimetric indices of biological condition. Ecol Indic 110:105862. https://doi.org/10.1016/j.ecolind.2019.105862 [DOI: 10.1016/j.ecolind.2019.105862]
  60. Sanches BDO, Becker B, Hughes RM, Petesse ML, Ribeiro JR, Santos GB (2019) Fish-based multimetric index for evaluating land use effects on large neotropical reservoirs. J Appl Ichthyol 35:1129–1140. https://doi.org/10.1111/jai.13954 [DOI: 10.1111/jai.13954]
  61. Silva DRO, Ligeiro R, Hughes RM, Callisto M (2016) The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales. Environ Monit Assess 188:340. https://doi.org/10.1007/s10661-016-5326-z [DOI: 10.1007/s10661-016-5326-z]
  62. Silva DRO, Herlihy AT, Hughes RM, Callisto M (2017) An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecol Indic 81:514–525. https://doi.org/10.1016/j.ecolind.2017.06.017 [DOI: 10.1016/j.ecolind.2017.06.017]
  63. Šporka F, Vlek HE, Bulánková E, Krno I (2006) Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia 566:543–555. https://doi.org/10.1007/s10750-006-0073-8 [DOI: 10.1007/s10750-006-0073-8]
  64. Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276. https://doi.org/10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2 [DOI: 10.1890/1051-0761(2006)016[1267]
  65. Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E (2008) A process for creating multi-metric indices for large-scale aquatic surveys. J N Am Benthol Soc 27:878–891. https://doi.org/10.1899/08-053.1 [DOI: 10.1899/08-053.1]
  66. Uribe SV, Estades CF, Radeloff VC (2020) Pine plantations and five decades of land use change in central Chile. PLoS One 15:e0230193. https://doi.org/10.1371/journal.pone.0230193 [DOI: 10.1371/journal.pone.0230193]
  67. Vannucchi PE, Peralta-Maraver I, Tierno de Figueroa JM, Lopez-Rodríguez MJ (2017) Dynamics of the macroinvertebrate community and food web of a Mediterranean stream. J Freshw Ecol 32:229–245. https://doi.org/10.1080/02705060.2016.1267665 [DOI: 10.1080/02705060.2016.1267665]
  68. Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70:129–133. https://doi.org/10.1080/00031305.2016.1154108 [DOI: 10.1080/00031305.2016.1154108]
  69. Zhang Y, Cheng L, Kong M, Li W, Gong Z, Zhang L, Wang X, Cai Y, Li K (2019) Utility of a macroinvertebrate-based multimetric index in subtropical shallow lakes. Ecol Indic 106:105527. https://doi.org/10.1016/j.ecolind.2019.105527 [DOI: 10.1016/j.ecolind.2019.105527]

Grants

  1. FONDECYT 11190631/Comisión Nacional de Investigación Científica y Tecnológica (CL)

MeSH Term

Animals
Ecosystem
Environmental Monitoring
Invertebrates
Rivers
Seasons

Word Cloud

Created with Highcharts 10.0.0monthsvariabilitythroughoutyearwaterscoresindexgoodstreamqualitytaxaIndexnaturalChilemonthlywintervariedamong59macroinvertebratehigherabundancesHilsenhoffBioticHBIHSBIMacroinvertebrateMMIChBMWPclassesFebruarybiologicalMacroinvertebratessmallforestcentral-southsampledSeptember2017August2018assesstemporalassemblageeffectsecologicalindicatorsHigherprecipitationflowsoccurredcollectedfindingrichnesssummerFourdemonstratedmarkedseasonalityabundantdecreasingfollowingLimnoperlajaffueliNavásNousiamaculataDemoulinSmicrideaspMcLachlanChironomidaesppfamilySpecies-levelMultimetricChileanBiologicalMonitoringWorkingPartyreflectingHoweversignificantlydifferentseasonsrangingacrossthreeexcellentshowinglowestspringcoincidingtolerantspeciesindicatedsiteconditionsrespectivelyShannon-Weaverdiversityranged2April178howeverPielouevennesshighvalues>062exceptChangesmacroinvertebratescompositionexplainedprimarilydischargetemperatureconductivityfindingsindicateassemblagesinfluencesindicesThereforerecommendaccountedbiomonitoringprogramsalsoemphasizeneedusecautioninterpretingavoidmisinterpretationsclassificationTemporalVariabilityAssemblagesMediterraneanCoastalStream:ImplicationsBioassessmentBiomonitoringbioticmanagementmultimetric

Similar Articles

Cited By