Radiomics analysis improves FDG PET/CT-based risk stratification of cytologically indeterminate thyroid nodules.

Luca Giovanella, Lisa Milan, Arnoldo Piccardo, Gianluca Bottoni, Marco Cuzzocrea, Gaetano Paone, Luca Ceriani
Author Information
  1. Luca Giovanella: Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland. luca.giovanella@eoc.ch. ORCID
  2. Lisa Milan: Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
  3. Arnoldo Piccardo: Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy.
  4. Gianluca Bottoni: Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy.
  5. Marco Cuzzocrea: Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
  6. Gaetano Paone: Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.
  7. Luca Ceriani: Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500, Bellinzona, Switzerland.

Abstract

PURPOSE: As ~25% of cytologically indeterminate thyroid nodules harbour malignancy, diagnostic lobectomy is still performed in many cases. FDG PET/CT rules out malignancy in visually negative nodules; however, none of the currently available interpretation criteria differentiates malignant from benign FDG-avid nodules. We evaluated the ability of PET metrics and radiomics features (RFs) to predict final diagnosis of FDG-avid cytologically indeterminate thyroid nodules.
METHODS: Seventy-eight patients were retrospectively included. After volumetric segmentation of each thyroid lesion, 4 PET metrics and 107 RFs were extracted. A logistic regression was performed including thyroid stimulating hormone, PET metrics, and RFs to assess their predictive performance. A linear combination of the resulting parameters generated a radiomics score (RS) that was matched with cytology classes (Bethesda III and IV) and compared with final diagnosis.
RESULTS: Two RFs (shape_Sphericity and glcm_Autocorrelation) differentiated malignant from benign lesions. A predictive model integrating RS and cytology classes effectively stratified the risk of malignancy. The prevalence of thyroid cancer increased from 5 to 37% and 79% in accordance with the number (score 0, 1 or 2, respectively) of positive biomarkers.
CONCLUSIONS: Our multiparametric model may be useful for reducing the number of diagnostic lobectomies with advantages in terms of costs and quality of life for patients.

Keywords

References

  1. Thyroid. 2012 Feb;22(2):165-72 [PMID: 22257371]
  2. J Clin Endocrinol Metab. 2007 Nov;92(11):4485-8 [PMID: 17684046]
  3. Endocr Pathol. 2013 Dec;24(4):177-83 [PMID: 24014040]
  4. Endocr Rev. 2018 Apr 1;39(2):154-191 [PMID: 29300866]
  5. Int J Endocrinol. 2020 Apr 21;2020:7543930 [PMID: 32377187]
  6. BMC Endocr Disord. 2020 Apr 15;20(1):48 [PMID: 32293401]
  7. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  8. Rev Endocr Metab Disord. 2021 Jun;22(2):453-460 [PMID: 32959174]
  9. J Clin Endocrinol Metab. 2014 Sep;99(9):3263-74 [PMID: 24873995]
  10. Endocrine. 2015 Dec;50(3):681-8 [PMID: 25948075]
  11. Thyroid. 2021 Jan;31(1):88-95 [PMID: 32517585]
  12. Eur J Nucl Med Mol Imaging. 2015 Feb;42(2):328-54 [PMID: 25452219]
  13. Cancer. 2011 Oct 15;117(20):4582-94 [PMID: 21432844]
  14. J Clin Endocrinol Metab. 2007 May;92(5):1630-4 [PMID: 17284624]
  15. Malawi Med J. 2012 Sep;24(3):69-71 [PMID: 23638278]
  16. Eur J Hybrid Imaging. 2017;1(1):3 [PMID: 29782578]
  17. Cancer Cytopathol. 2020 Apr;128(4):250-259 [PMID: 31899594]
  18. Rev Endocr Metab Disord. 2019 Mar;20(1):47-64 [PMID: 30900067]
  19. J Nucl Med. 2006 May;47(5):770-5 [PMID: 16644746]
  20. Clin Positron Imaging. 1999 May;2(3):159-171 [PMID: 14516540]
  21. Thyroid. 2016 Jan;26(1):1-133 [PMID: 26462967]
  22. Cancer Cytopathol. 2014 Jul;122(7):481-3 [PMID: 24634420]
  23. Best Pract Res Clin Endocrinol Metab. 2014 Aug;28(4):507-18 [PMID: 25047202]
  24. Endocr Relat Cancer. 2018 Mar;25(3):R163-R177 [PMID: 29255094]

MeSH Term

Fluorodeoxyglucose F18
Humans
Positron Emission Tomography Computed Tomography
Quality of Life
Retrospective Studies
Risk Assessment
Sensitivity and Specificity
Thyroid Neoplasms
Thyroid Nodule

Chemicals

Fluorodeoxyglucose F18

Word Cloud

Created with Highcharts 10.0.0thyroidnodulesPETmetricsRFscytologicallyindeterminatemalignancymodeldiagnosticperformedFDGmalignantbenignFDG-avidradiomicsfinaldiagnosispatientspredictivescoreRScytologyclassesrisknumberRadiomicsPURPOSE:~25%harbourlobectomystillmanycasesPET/CTrulesvisuallynegativehowevernonecurrentlyavailableinterpretationcriteriadifferentiatesevaluatedabilityfeaturespredictMETHODS:Seventy-eightretrospectivelyincludedvolumetricsegmentationlesion4107extractedlogisticregressionincludingstimulatinghormoneassessperformancelinearcombinationresultingparametersgeneratedmatchedBethesdaIIIIVcomparedRESULTS:Twoshape_Sphericityglcm_Autocorrelationdifferentiatedlesionsintegratingeffectivelystratifiedprevalencecancerincreased537%79%accordance012respectivelypositivebiomarkersCONCLUSIONS:multiparametricmayusefulreducinglobectomiesadvantagestermscostsqualitylifeanalysisimprovesPET/CT-basedstratification18FDG-PET-CTIndeterminatenodulePredictive

Similar Articles

Cited By (12)