Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway.

Liu Xuemei, Shengjie Qiu, Guiying Chen, Mingyuan Liu
Author Information
  1. Liu Xuemei: Department of Gynaecology and Obstetrics, Jinan City People's Hospital, Jinan, China.
  2. Shengjie Qiu: Department of Clinical Laboratory, People's Hospital of Jiulongpo District, Chongqing, China.
  3. Guiying Chen: Department of Obstetrics and Gynecology, Tai'an Central Hospital, Tai'an, China.
  4. Mingyuan Liu: Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, China. ORCID

Abstract

Gestational diabetes mellitus (GDM) is a special kind of diabetes that arises only during pregnancy. A woman with GDM has a higher risk of developing type-2 diabetes and other metabolic diseases. In this exploration, we intended to scrutinize the therapeutic actions of Myrtenol against the streptozotocin (STZ)-provoked GDM in rats. GDM was provoked in the pregnant rats via injecting the 1% of STZ (25 mg/kg) and then treated with the 50 mg/kg of myrtenol. The glucose level and bodyweight of animals were noted. The lipid profile, that is, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein (HDL) was determined by respective kits. The lipid peroxidation and antioxidants status were examined using assay kits. The status of proinflammatory markers was investigated by assay kits. The messenger RNA (mRNA) expressions of TLR4/MyD88/NF-κB signaling proteins were studied by reverse transcription polymerase chain reaction analysis. The hepatic and pancreatic tissues were examined microscopically. Myrtenol treatment notably decreased the status of blood glucose and lipid profile and improved the HDL in the GDM rats. The status of lipid peroxidation and inflammatory markers were substantially reduced by the myrtenol and it enhanced the antioxidants status of GDM animals. Myrtenol treatment remarkably downregulated the mRNA expressions of TLR4/MyD88/NF-κB signaling proteins. The histological findings also proved the therapeutic actions of myrtenol. Altogether, the findings of this investigation unveiled the therapeutic actions of the myrtenol against the STZ-provoked GDM in rats. Myrtenol could be a promising therapeutic agent to treat GDM in the future.

Keywords

References

  1. E. A. Reece, G. Leguizamon, A. Wiznitzer, Lancet 2009, 373, 1789.
  2. J. R. Nansseu, S. S. Ngo-Um, E. V. Balti, Syst. Rev. 2016, 5, 188.
  3. A. Ben-Haroush, Y. Yogev, M. Hod, Diabet. Med. 2004, 21, 103.
  4. A. Nankervis, S. Price, J. Conn, Aust. J. Gen. Pract. 2018, 47, 445.
  5. P. Damm, Int. J. Gynecology Obstetrics 2009, 104, 25.
  6. D. Dabelea, Diabetes Care 2007, 30, 169.
  7. C. Zhu, H. Yang, Q. Geng, Q. Ma, Y. Long, C. Zhou, M. Chen, PLOS One 2015, 10, 126490.
  8. M. Lappas, M. Permezel, J. Clin. Endocrinol. Metab. 2004, 89, 5627.
  9. U. J. Eriksson, L. A. Borg, Diabetologia 1991, 34, 325.
  10. L. A. O'Neill, D. Golenbock, A. G. Bowie, Nat. Rev. Immunol. 2013, 13, 453.
  11. K. S. Michelsen, M. H. Wong, P. K. Shah, W. Zhang, J. Yano, T. M. Doherty, S. Akira, T. B. Rajavashisth, M. Arditi, Proc.Natl. Acad. Sci. U.S.A 2004, 101, 10679.
  12. B. G. Xie, S. Jin, W. J. Zhu, Exp. Ther. Med. 2014, 7, 236.
  13. H. Feng, R. Su, Y. Song, C. Wang, L. Lin, J. Ma, H. Yang, PLOS One 2016, 11, 157185.
  14. D. Verzola, A. Bonanni, A. Sofia, F. Montecucco, E. D'Amato, V. Cademartori, E. L. Parodi, F. Viazzi, C. Venturelli, G. Brunori, G. Garibotto, J. Cachexia Sarcopenia Muscle 2017, 8, 131.
  15. M. Kuzmicki, B. Telejko, N. Wawrusiewicz-Kurylonek, D. Lipinska, J. Pliszka, J. Wilk, A. Zielinska, J. Skibicka, J. Szamatowicz, A. Kretowski, M. Gorska, Eur. J. Endocrinol. 2013, 168, 419.
  16. L. Khambule, J. A. George, Adv. Exp. Med. Biol. 2019, 1134, 217.
  17. K. A. S. Murthy, A. Bhandiwada, S. L. Chandan, S. L. Gowda, G. Sindhusree, Indian J. Endocrinol. Metab. 2018, 22, 79.
  18. R. F. Grimble, Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 551.
  19. T. Liu, W. Zheng, L. Wang, L. Wang, Y. Zhang, Reprod. Sci. 2020, 27, 722.
  20. T. Ozek, B. Demirci, K. H. C. Baser, J. Essent. Oil Res. 2000, 12, 541.
  21. M. R. C. Moreira, M. G. D. S. S. Salvadori, A. A. C. de Almeida, D. P. de Sousa, J. Jordán, P. Satyal, R. M. de Freitas, R. N. de Almeida, Neurosci. Lett. 2014, 579, 119.
  22. B. S. Gomes, B. P. S. Neto, E. M. Lopes, F. V. M. Cunha, A. R. Araújo, C. W. S. Wanderley, D. V. T. Wong, R. C. P. L. Júnior, R. A. Ribeiro, D. P. Sousa, J. V. R. Medeiros, R. C. M. Oliveira, F. A. Oliveira, Chem.-Biol. Interact. 2017, 273, 73.
  23. A. F. S. C. Viana, F. V. da Silva, H. Fernandes, B. de, I. S. Oliveira, M. A. Braga, P. I. G., Nunes, D. Viana, A. de, D. P. de Sousa, V. S. Rao, R. Oliveira, C. M. de, J. Pharm. Pharmacol. 2016, 68, 1085.
  24. R. O. Silva, M. S. Salvadori, F. B. M. Sousa, M. S. Santos, N. S. Carvalho, D. P. Sousa, B. S. Gomes, F. A. Oliveira, A. L. R. Barbosa, R. M. Freitas, R. N. de Almeida, J. V. R. Medeiros, Flavour Fragrance J. 2014, 29, 184.
  25. L. Evstatieva, M. Todorova, D. Antonova, J. Staneva, Pharmacogn. Mag. 2010, 6, 256.
  26. A. Sepici-Dincel, S. Açikgöz, C. Cevik, M. Sengelen, E. Yeşilada, J. Ethnopharmacol. 2007, 110, 498.
  27. W. Xu, M. Tang, J. Wang, L. Wang, Mol. Biol. Rep. 2020, 47(10), 7537.
  28. B. Baz, J. P. Riveline, J. F, Eur. J. Endocrinol. 2016, 174, 43.
  29. G. H. Moen, C. Sommer, R. B. Prasad, L. Sletner, L. Groop, E. Qvigstad, K. Birkeland, Eur. J. Endocrinol. 2017, 176, 247.
  30. U. Kampmann, S. Knorr, J. Fuglsang, P. Ovesen, J. Diabetes Res. 2019, 2019, 5320156.
  31. T. Filardi, F. Panimolle, C. Crescioli, A. Lenzi, S. Morano, Nutrients 2019, 11, 1549.
  32. E. C. Johns, F. C. Denison, J. E. Norman, R. M. Reynolds, Trends Endocrinol Metabol. TEM 2018, 29, 743.
  33. M. Persson, S. Cnattingius, E. Villamor, J. Soderling, B. Pasternak, O. Stephansson, M. Neovius, BMJ 2017, 357, 2563.
  34. N. Kaseva, M. Vaarasmaki, J. Sundvall, H. M. Matinolli, M. Sipola, M. Tikanmaki, K. Heinonen, A. Lano, K. Wehkalampi, D. Wolke, A. Ruokonen, S. Andersson, M. R. Jarvelin, K. Raikkonen, J. G. Eriksson, E. Kajantie, J. Clin. Endocrinol. Metabol 2019, 104, 2785.
  35. S. Bo, A. Signorile, G. Menato, R. Gambino, C. Bardelli, M. L. Gallo, M. Cassader, M. Massobrio, G. F. Pagano, J. Endocrinol. Invest. 2005, 28, 779.
  36. J. M. Ategbo, O. Grissa, A. Yessoufou, A. Hichami, K. L. Dramane, K. Moutairou, J. Clin. Endocrinol. Metab. 2006, 91, 4137.
  37. P. Newsholme, V. F. Cruzat, K. N. Keane, Biochem. J. 2016, 473, 4527.
  38. M. M. Amin, N. Rafiei, P. Poursafa, Environ. Sci. Pollut. Res. Int. 2018, 25, 34046.
  39. C. D. Zhan, R. K. Sindhu, J. Pang, A. Ehdaie, N. D. Vaziri, J. Hypertens. 2004, 22, 2025.
  40. H. Hokayem, C. Bisbal, K. Lambert, A. Avignon, Médecine des maladies métaboliques 2012, 6, 327.
  41. K. Haskins, B. Bradley, K. Powers, Ann. N.Y. Acad. Sci. 2003, 1005, 43.
  42. R. A. Kowluru, P. S. Chan, Exp. Diabetes. Res. 2007, 4, 43603.
  43. B. Tumurbaatar, A. T. Poole, G. Olson, Metab. Syndr. Relat. Disord. 2017, 15, 86.
  44. J. F. Plows, J. L. Stanley, P. N. Baker, C. M. Reynolds, M. H. Vickers, Int. J. Mol. Sci. 2018, 19, 3342.
  45. M. Shimobayashi, V. Albert, B. Woelnerhanssen, I. C. Frei, D. Weissenberger, A. C. Meyer-Gerspach, N. Clement, S. Moes, M. Colombi, J. A. Meier, M. M. Swierczynska, P. Jeno, C. Beglinger, R. Peterli, M. N. Hall, J. Clin. Invest. 2018, 128, 1538.
  46. K. Paz, R. Hemi, D. LeRoith, A. Karasik, E. Elhanany, H. Kanety, Y. Zick, J. Biol. Chem. 1997, 272, 29911.
  47. I. Jialal, H. Kaur, S. Devaraj, J. Clin. Endocrinol. Metab. 2014, 99, 39.
  48. K. Lucas, M. Maes, Mol. Neurobiol. 2013, 48, 190.
  49. S. I. Miller, R. K. Ernst, M. W. Bader, Nat. Rev. Microbiol. 2005, 3, 36.
  50. S. Akira, K. Takeda, T. Kaisho, Nat. Immunol. 2001, 2, 675.
  51. P. Kleiblova, I. Dostalova, M. Bartlova, Mol. Cell. Endocrinol. 2010, 314, 150.
  52. J. Jager, T. Gremeaux, M. Cormont, Endocrinology 2007, 148, 241.
  53. J. M. Stephens, J. Lee, P. F. Pilch, J. Biol. Chem. 1997, 272, 971.
  54. S. M. Reyna, S. Ghosh, P. Tantiwong, Diabetes 2008, 57, 2595.
  55. X. Liu, T. Ukai, H. Yumoto, M. Davey, S. Goswami, F. C. Gibson, Atherosclerosis 2008, 196, 146.
  56. H. Y. Lin, S. W. Weng, F. C. Shen, Y. H. Chang, W. S. Lian, C. H. Hsieh, J. H. Chuang, T. K. Lin, C. W. Liou, C. S. Chang, C. Y. Lin, Y. J. Su, P. W. Wang, Antioxid. Redox. Signal. 2020, 33, 66.

MeSH Term

Animals
Bicyclic Monoterpenes
Diabetes Mellitus, Experimental
Female
Inflammation
Oxidative Stress
Pregnancy
Rats

Chemicals

Bicyclic Monoterpenes
myrtenol

Word Cloud

Created with Highcharts 10.0.0GDMMyrtenolratsmyrtenolstatusdiabetestherapeuticlipidactionskitsTLR4/MyD88/NF-κBsignalingstreptozotocinSTZpregnantviaglucoseanimalsprofilelipoproteinHDLperoxidationantioxidantsexaminedassaymarkersmRNAexpressionsproteinstreatmentfindingsoxidativestressinflammationGestationalmellitusspecialkindarisespregnancywomanhigherriskdevelopingtype-2metabolicdiseasesexplorationintendedscrutinize-provokedprovokedinjecting1%25 mg/kgtreated50 mg/kglevelbodyweightnotedtotalcholesteroltriglycerideslow-densityhigh-densitydeterminedrespectiveusingproinflammatoryinvestigatedmessengerRNAstudiedreversetranscriptionpolymerasechainreactionanalysishepaticpancreatictissuesmicroscopicallynotablydecreasedbloodimprovedinflammatorysubstantiallyreducedenhancedremarkablydownregulatedhistologicalalsoprovedAltogetherinvestigationunveiledSTZ-provokedpromisingagenttreatfuturealleviatesdiabeticpathwaygestational

Similar Articles

Cited By