Biased Coupling to β-Arrestin of Two Common Variants of the CB Cannabinoid Receptor.
Gábor Turu, Eszter Soltész-Katona, András Dávid Tóth, Cintia Juhász, Miklós Cserző, Ádám Misák, András Balla, Marc G Caron, László Hunyady
Author Information
Gábor Turu: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Eszter Soltész-Katona: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
András Dávid Tóth: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Cintia Juhász: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Miklós Cserző: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Ádám Misák: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
András Balla: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Marc G Caron: Department of Cell Biology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, United States.
László Hunyady: Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
中文译文
English
β-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their intracellular trafficking and signaling. Development of biased GPCR agonists, selectively targeting either G protein or β-arrestin pathways, are in the focus of interest due to their therapeutic potential in different pathological conditions. The CB cannabinoid receptor (CBR) is a GPCR involved in various functions in the periphery and the central nervous system. Two common occurring variants of CBR, harboring Q63R or L133I missense mutations, have been implicated in the development of a diverse set of disorders. To evaluate the effect of these mutations, we characterized the binding profile of these mutant CB receptors to G proteins and β-arrestin2. Although their ability to inhibit cAMP signaling was similar, the Q63R mutant had increased, whereas the L133I mutant receptor had decreased β-arrestin2 binding. In line with these observations, the variants also had altered intracellular trafficking. Our results show that two common variants of the CB receptor have biased signaling properties, which may contribute to the pathogenesis of the associated disorders and may offer CBR as a target for further development of biased receptor activation strategies.
J Mol Endocrinol. 2015 Feb;54(1):75-89
[PMID: 25510402 ]
Mol Pharmacol. 2015 Jun;87(6):972-81
[PMID: 25804845 ]
J Pharmacol Exp Ther. 2016 Aug;358(2):342-51
[PMID: 27194477 ]
Cell Signal. 2021 Jun;82:109954
[PMID: 33610717 ]
Bioinformatics. 2014 Oct 15;30(20):2981-2
[PMID: 24996895 ]
J Biol Chem. 2007 Oct 5;282(40):29678-90
[PMID: 17684017 ]
Front Pharmacol. 2019 Feb 19;10:125
[PMID: 30837883 ]
Curr Med Chem. 2010;17(14):1468-86
[PMID: 20166921 ]
Fortschr Neurol Psychiatr. 2000 Oct;68(10):433-8
[PMID: 11103679 ]
Biomed Pharmacother. 2021 Apr;136:111283
[PMID: 33482616 ]
Nat Chem Biol. 2012 Jul;8(7):622-30
[PMID: 22634635 ]
Mol Pharmacol. 2012 Feb;81(2):250-63
[PMID: 22064678 ]
J Mol Neurosci. 2020 Jan;70(1):26-31
[PMID: 31407233 ]
Clin Rheumatol. 2018 Nov;37(11):2933-2938
[PMID: 30032418 ]
Pharmacol Ther. 2020 Jul;211:107540
[PMID: 32201315 ]
Pharmacol Rev. 2017 Jul;69(3):256-297
[PMID: 28626043 ]
Pharmacogenomics J. 2007 Dec;7(6):380-5
[PMID: 17189959 ]
Front Endocrinol (Lausanne). 2019 Aug 06;10:519
[PMID: 31447777 ]
Ann N Y Acad Sci. 2008 Oct;1139:434-49
[PMID: 18991891 ]
Biochem Pharmacol. 2018 Nov;157:8-17
[PMID: 30055149 ]
J Comput Chem. 2004 Oct;25(13):1605-12
[PMID: 15264254 ]
Trends Endocrinol Metab. 2006 May-Jun;17(4):159-65
[PMID: 16595179 ]
Haematologica. 2011 Dec;96(12):1883-5
[PMID: 21828121 ]
Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:619-31
[PMID: 12432948 ]
J Affect Disord. 2011 Nov;134(1-3):427-30
[PMID: 21658778 ]
Curr Mol Pharmacol. 2014;7(1):67-80
[PMID: 25023974 ]
J Biol Chem. 2018 Jan 19;293(3):876-892
[PMID: 29146594 ]
Biomolecules. 2021 Feb 04;11(2):
[PMID: 33557162 ]
Nature. 1993 Sep 2;365(6441):61-5
[PMID: 7689702 ]
Nucleic Acids Res. 2020 Jan 8;48(D1):D682-D688
[PMID: 31691826 ]
Curr Opin Pharmacol. 2017 Feb;32:32-43
[PMID: 27835801 ]
Cell Signal. 2021 Jun;82:109967
[PMID: 33640432 ]
J Biochem. 2001 May;129(5):665-9
[PMID: 11328586 ]
Pharmacogenet Genomics. 2010 Mar;20(3):157-66
[PMID: 20124950 ]
J Cell Sci. 2002 Feb 1;115(Pt 3):455-65
[PMID: 11861753 ]
Nat Methods. 2021 Jan;18(1):100-106
[PMID: 33318659 ]
Scand J Rheumatol. 2015;44(4):284-7
[PMID: 25974389 ]
J Biol Chem. 2014 Aug 22;289(34):23302-17
[PMID: 25016018 ]
J Biomol Struct Dyn. 2020 Jan;38(1):32-47
[PMID: 30652534 ]
Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jul 2;38(1):4-15
[PMID: 22421596 ]
Front Pharmacol. 2018 Nov 20;9:1202
[PMID: 30524271 ]
J Cell Biol. 2012 Mar 19;196(6):801-10
[PMID: 22412018 ]
Cannabis Cannabinoid Res. 2017 Mar 01;2(1):48-60
[PMID: 28861504 ]
Biochem Pharmacol. 2018 Nov;157:67-84
[PMID: 30121249 ]
Genet Test Mol Biomarkers. 2018 May;22(5):320-326
[PMID: 29694791 ]
J Biol Chem. 2002 Mar 15;277(11):9429-36
[PMID: 11777902 ]
Egypt J Immunol. 2017 Jan;24(1):57-66
[PMID: 29120578 ]
J Biol Chem. 2000 Jun 2;275(22):17201-10
[PMID: 10748214 ]
J Biol Chem. 2007 Oct 5;282(40):29089-100
[PMID: 17675294 ]
J Pharmacol Exp Ther. 2005 Nov;315(2):828-38
[PMID: 16081674 ]
Biochem J. 2000 Apr 15;347(Pt 2):369-73
[PMID: 10749665 ]
Biol Psychiatry. 2010 May 15;67(10):974-82
[PMID: 19931854 ]
HEK293 Cells
Humans
Mutation, Missense
Protein Binding
Protein Transport
Receptor, Cannabinoid, CB2
beta-Arrestins
Receptor, Cannabinoid, CB2
beta-Arrestins