The Application of Single-Cell RNA Sequencing in Mammalian Meiosis Studies.

Yiheng Peng, Huanyu Qiao
Author Information
  1. Yiheng Peng: Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
  2. Huanyu Qiao: Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

Abstract

Meiosis is a cellular division process that produces gametes for sexual reproduction. Disruption of complex events throughout meiosis, such as synapsis and homologous recombination, can lead to infertility and aneuploidy. To reveal the molecular mechanisms of these events, transcriptome studies of specific substages must be conducted. However, conventional methods, such as bulk RNA-seq and RT-qPCR, are not able to detect the transcriptional variations effectively and precisely, especially for identifying cell types and stages with subtle differences. In recent years, mammalian meiotic transcriptomes have been intensively studied at the single-cell level by using single-cell RNA-seq (scRNA-seq) approaches, especially through two widely used platforms, Smart-seq2 and Drop-seq. The scRNA-seq protocols along with their downstream analysis enable researchers to accurately identify cell heterogeneities and investigate meiotic transcriptomes at a higher resolution. In this review, we compared bulk RNA-seq and scRNA-seq to show the advantages of the scRNA-seq in meiosis studies; meanwhile, we also pointed out the challenges and limitations of the scRNA-seq. We listed recent findings from mammalian meiosis (male and female) studies where scRNA-seq applied. Next, we summarized the scRNA-seq analysis methods and the meiotic marker genes from spermatocytes and oocytes. Specifically, we emphasized the different features of the two scRNA-seq protocols (Smart-seq2 and Drop-seq) in the context of meiosis studies and discussed their strengths and weaknesses in terms of different research purposes. Finally, we discussed the future applications of scRNA-seq in the meiosis field.

Keywords

References

  1. Mol Cell. 2017 Feb 16;65(4):631-643.e4 [PMID: 28212749]
  2. Hum Reprod. 2008 Feb;23(2):379-86 [PMID: 18033938]
  3. Development. 2020 Feb 3;147(3): [PMID: 31964773]
  4. Arch Gynecol Obstet. 2019 Aug;300(2):431-440 [PMID: 30937532]
  5. Hum Reprod Update. 2017 Nov 1;23(6):660-680 [PMID: 28981651]
  6. Nat Methods. 2011 Nov 20;9(1):72-4 [PMID: 22101854]
  7. Cell Discov. 2020 Dec 29;6(1):97 [PMID: 33372178]
  8. Nat Rev Urol. 2018 Jun;15(6):369-384 [PMID: 29622783]
  9. Sci Rep. 2018 Dec 17;8(1):17890 [PMID: 30559372]
  10. Proteomics. 2005 Jan;5(1):270-81 [PMID: 15602768]
  11. Best Pract Res Clin Endocrinol Metab. 2013 Aug;27(4):617-28 [PMID: 24054934]
  12. Stem Cell Res. 2018 May;29:207-214 [PMID: 29730571]
  13. Science. 2002 Jun 21;296(5576):2181-3 [PMID: 12077403]
  14. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  15. Biol Reprod. 2019 Sep 1;101(3):549-566 [PMID: 31077289]
  16. Mol Cell. 2018 Dec 20;72(6):1021-1034.e4 [PMID: 30472193]
  17. Genome Res. 2019 Jul;29(7):1078-1086 [PMID: 31186301]
  18. Annu Rev Cell Dev Biol. 2004;20:525-58 [PMID: 15473851]
  19. Brief Funct Genomics. 2018 Jul 1;17(4):233-239 [PMID: 29126257]
  20. Biol Reprod. 2018 Jul 1;99(1):112-126 [PMID: 29385397]
  21. Dev Cell. 2020 Aug 24;54(4):548-566.e7 [PMID: 32795394]
  22. Cell Stem Cell. 2017 Oct 5;21(4):533-546.e6 [PMID: 28985528]
  23. Am J Transl Res. 2019 Jan 15;11(1):1-15 [PMID: 30787966]
  24. PLoS Genet. 2019 Mar 20;15(3):e1007810 [PMID: 30893341]
  25. Mol Cell Endocrinol. 2000 May 25;163(1-2):101-8 [PMID: 10963881]
  26. Mol Cell. 2019 Oct 17;76(2):320-328 [PMID: 31563431]
  27. Mol Cell. 2015 May 21;58(4):610-20 [PMID: 26000846]
  28. Nucleic Acids Res. 2014 Aug;42(14):8845-60 [PMID: 25053837]
  29. Hum Reprod. 2019 May 1;34(5):932-941 [PMID: 30865283]
  30. Nat Methods. 2013 Nov;10(11):1096-8 [PMID: 24056875]
  31. Biol Reprod. 2019 Sep 1;101(3):617-634 [PMID: 31077285]
  32. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  33. J Assist Reprod Genet. 2017 Sep;34(9):1189-1197 [PMID: 28643089]
  34. Nat Methods. 2017 Jun;14(6):584-586 [PMID: 28418000]
  35. Sci Rep. 2017 Oct 6;7(1):12781 [PMID: 28986563]
  36. Mol Aspects Med. 2018 Feb;59:36-46 [PMID: 28754496]
  37. PLoS One. 2020 Nov 5;15(11):e0241698 [PMID: 33152014]
  38. Cell Discov. 2018 Jun 19;4:33 [PMID: 29928511]
  39. J Assist Reprod Genet. 2017 Feb;34(2):167-177 [PMID: 27817040]
  40. Genome Biol. 2017 May 8;18(1):84 [PMID: 28482897]
  41. Cell Stem Cell. 2018 Oct 4;23(4):599-614.e4 [PMID: 30174296]
  42. Genome Med. 2017 Aug 18;9(1):75 [PMID: 28821273]
  43. Sci Data. 2018 Sep 11;5:180192 [PMID: 30204153]
  44. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  45. Cell. 2020 Feb 6;180(3):585-600.e19 [PMID: 32004457]
  46. Exp Cell Res. 2004 May 15;296(1):57-63 [PMID: 15120994]
  47. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  48. Front Cell Dev Biol. 2018 Sep 04;6:108 [PMID: 30234113]
  49. Cell Res. 2018 Sep;28(9):879-896 [PMID: 30061742]
  50. Hum Reprod. 2020 Apr 28;35(4):886-900 [PMID: 32325493]
  51. Front Genet. 2019 Apr 05;10:317 [PMID: 31024627]
  52. Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20015-20026 [PMID: 32759216]
  53. Cell Mol Life Sci. 2021 Jan;78(2):695-713 [PMID: 32367190]
  54. BMC Genomics. 2016 Apr 19;17:294 [PMID: 27094866]
  55. Cell Stem Cell. 2017 Jun 1;20(6):858-873.e4 [PMID: 28457750]
  56. Semin Cell Dev Biol. 2021 May 15;: [PMID: 34006455]
  57. Nat Methods. 2016 Mar;13(3):229-232 [PMID: 26752769]
  58. Cell Res. 2018 Dec;28(12):1141-1157 [PMID: 30315278]
  59. Cell Stem Cell. 2019 Feb 7;24(2):201-203 [PMID: 30735645]
  60. Elife. 2019 Jun 25;8: [PMID: 31237565]
  61. BMC Genomics. 2020 Jul 10;21(1):475 [PMID: 32650721]
  62. Nat Methods. 2019 May;16(5):409-412 [PMID: 31011186]
  63. Sci Rep. 2016 Dec 22;6:39638 [PMID: 28004769]
  64. Science. 2014 Feb 14;343(6172):776-9 [PMID: 24531970]
  65. Nature. 2011 Apr 7;472(7341):90-4 [PMID: 21399628]
  66. BMC Genomics. 2016 Aug 12;17(1):628 [PMID: 27519264]
  67. Mol Cell Endocrinol. 2019 Jul 15;492:110443 [PMID: 31077744]
  68. Hum Reprod. 2019 Jul 8;34(7):1302-1312 [PMID: 31211846]
  69. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  70. Cell Rep. 2018 Nov 6;25(6):1650-1667.e8 [PMID: 30404016]
  71. Cell. 2012 Mar 2;148(5):886-95 [PMID: 22385958]
  72. FASEB J. 2020 Sep;34(9):12634-12645 [PMID: 32716582]
  73. Nat Commun. 2018 Jun 22;9(1):2442 [PMID: 29934517]
  74. Nat Protoc. 2018 Nov;13(11):2685-2713 [PMID: 30353175]
  75. Reprod Domest Anim. 2021 Apr;56(4):642-657 [PMID: 33496347]
  76. Front Cell Dev Biol. 2018 Apr 20;6:28 [PMID: 29732369]
  77. Curr Top Dev Biol. 1998;37:141-200 [PMID: 9352186]
  78. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  79. Nat Rev Drug Discov. 2016 Mar;15(3):204-16 [PMID: 26669673]
  80. Brief Bioinform. 2021 Jan 18;22(1):20-29 [PMID: 32363378]
  81. Hum Reprod. 1998 Apr;13 Suppl 1:1-8 [PMID: 9663765]
  82. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  83. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3293-8 [PMID: 26951663]
  84. BMC Genomics. 2014 Jan 18;15:39 [PMID: 24438502]
  85. Cell Stem Cell. 2020 Feb 6;26(2):262-276.e4 [PMID: 31928944]
  86. Chromosoma. 2003 May;111(8):483-8 [PMID: 12743712]
  87. Genome Biol. 2016 Apr 28;17:77 [PMID: 27121950]
  88. J Ovarian Res. 2019 Jun 8;12(1):53 [PMID: 31176373]
  89. Best Pract Res Clin Endocrinol Metab. 2011 Dec;25(6):861-73 [PMID: 22115162]
  90. Dev Biol. 2019 Oct 15;454(2):118-127 [PMID: 31255637]
  91. Nat Biotechnol. 2012 Aug;30(8):763-5 [PMID: 22871714]
  92. Fertil Steril. 2006 Nov;86(5 Suppl 1):S111-4 [PMID: 17055802]
  93. J Proteome Res. 2009 Apr;8(4):2032-44 [PMID: 19714818]
  94. Dev Cell. 2018 Sep 10;46(5):651-667.e10 [PMID: 30146481]
  95. Nat Commun. 2019 Mar 19;10(1):1251 [PMID: 30890697]
  96. Clin Rev Allergy Immunol. 2017 Aug;53(1):78-86 [PMID: 27628237]
  97. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  98. Dev Cell. 2020 Aug 24;54(4):529-547.e12 [PMID: 32504559]
  99. Nat Methods. 2015 Jun;12(6):519-22 [PMID: 25915121]

Grants

  1. R00 HD082375/NICHD NIH HHS
  2. R01 GM135549/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0scRNA-seqmeiosisstudiesRNA-seqmeioticsingle-cellMeiosiseventstranscriptomemethodsbulkespeciallycellrecentmammaliantranscriptomestwoSmart-seq2Drop-seqprotocolsanalysisdifferentdiscussedcellulardivisionprocessproducesgametessexualreproductionDisruptioncomplexthroughoutsynapsishomologousrecombinationcanleadinfertilityaneuploidyrevealmolecularmechanismsspecificsubstagesmustconductedHoweverconventionalRT-qPCRabledetecttranscriptionalvariationseffectivelypreciselyidentifyingtypesstagessubtledifferencesyearsintensivelystudiedlevelusingapproacheswidelyusedplatformsalongdownstreamenableresearchersaccuratelyidentifyheterogeneitiesinvestigatehigherresolutionreviewcomparedshowadvantagesmeanwhilealsopointedchallengeslimitationslistedfindingsmalefemaleappliedNextsummarizedmarkergenesspermatocytesoocytesSpecificallyemphasizedfeaturescontextstrengthsweaknessestermsresearchpurposesFinallyfutureapplicationsfieldApplicationSingle-CellRNASequencingMammalianStudiesoocyteoogenesisspermatocytespermatogenesistranscription

Similar Articles

Cited By