Bioaccessibility and Intestinal Transport of Deltamethrin in Pacific Oyster () Using Simulated Digestion/NCM460 Cell Models.

Yadan Jiao, Chune Liu, Chunsong Feng, Joe M Regenstein, Yongkang Luo, Yuqing Tan, Hui Hong
Author Information
  1. Yadan Jiao: Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
  2. Chune Liu: Institute of Yantai, China Agricultural University, Yantai, Shandong, China.
  3. Chunsong Feng: Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
  4. Joe M Regenstein: Department of Food Science, Cornell University, Ithaca, NY, United States.
  5. Yongkang Luo: Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
  6. Yuqing Tan: Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
  7. Hui Hong: Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.

Abstract

Deltamethrin (DEL) can be introduced into the food chain through bioaccumulation in Pacific oysters, and then potentially threaten human health. The objective of this study was to investigate the bioaccessibility of DEL in oysters with different cooking methods after simulated digestion. DEL content in different tissues of oysters going from high to low were gills, mantle, viscera, and adductor muscle. Bioaccessibility of DEL in oysters decreased after steaming (65%) or roasting (51%) treatments compared with raw oysters (82%), which indicated that roasting can be used as a recommended cooking method for oysters. In the simulated digestion process, the concentration of DEL in the digestive juice and the bioaccessibility of DEL were affected by the pH in the gastric phase. And the transport efficiency of DEL through the monolayer molecular membrane of NCM460 cells ranged from 35 to 45%. These results can help assess the potential harm to consumers of DEL in shellfish. Furthermore, it provides a reference for the impact of lipophilic toxins in seafood.

Keywords

References

  1. Toxicon. 2005 Jul;46(1):62-71 [PMID: 15922391]
  2. Int J Hyg Environ Health. 2015 May;218(3):281-92 [PMID: 25648288]
  3. Environ Int. 2012 Oct 15;47:99-106 [PMID: 22796891]
  4. Nat Protoc. 2019 Apr;14(4):991-1014 [PMID: 30886367]
  5. Arch Toxicol. 2012 Feb;86(2):165-81 [PMID: 21710279]
  6. Food Chem. 2021 May 1;343:128480 [PMID: 33158676]
  7. Environ Monit Assess. 2015 Mar;187(3):81 [PMID: 25655128]
  8. Environ Sci Technol. 2014;48(3):1931-9 [PMID: 24422434]
  9. J Lipid Res. 2002 Dec;43(12):2017-30 [PMID: 12454261]
  10. Environ Toxicol Pharmacol. 2005 Jul;20(1):77-82 [PMID: 21783571]
  11. Food Chem Toxicol. 2017 Jun;104:69-78 [PMID: 28202359]
  12. Ecotoxicol Environ Saf. 2021 Feb;209:111820 [PMID: 33385678]
  13. Environ Res. 2019 Mar;170:260-281 [PMID: 30599291]
  14. Food Funct. 2016 Jan;7(1):30-45 [PMID: 26527368]
  15. J Food Prot. 2019 Dec;82(12):2094-2099 [PMID: 31724880]
  16. Sci Total Environ. 2016 Jul 15;559:130-140 [PMID: 27058132]
  17. Environ Int. 2015 Feb;75:110-6 [PMID: 25461420]
  18. Sci Total Environ. 2021 Apr 1;763:144196 [PMID: 33383510]
  19. Bull Environ Contam Toxicol. 2006 Apr;76(4):614-21 [PMID: 16688543]
  20. Environ Monit Assess. 2016 Jun;188(6):374 [PMID: 27230426]
  21. Environ Int. 2018 Oct;119:125-132 [PMID: 29957354]
  22. Chemosphere. 2004 Dec;57(11):1707-11 [PMID: 15519417]
  23. Toxicol Appl Pharmacol. 2007 May 15;221(1):1-12 [PMID: 17442360]
  24. Toxicol Appl Pharmacol. 1982 Nov;66(2):153-61 [PMID: 7164094]
  25. Chemosphere. 2013 Mar;90(11):2705-13 [PMID: 23270708]
  26. Chemosphere. 2018 Jan;191:990-1007 [PMID: 29145144]
  27. Fish Shellfish Immunol. 2014 Jan;36(1):120-9 [PMID: 24176818]
  28. J Agric Food Chem. 2017 Aug 30;65(34):7406-7414 [PMID: 28782363]
  29. Vet J. 2009 Oct;182(1):7-20 [PMID: 18539058]
  30. Chemosphere. 2017 Sep;182:517-524 [PMID: 28521167]
  31. Compr Rev Food Sci Food Saf. 2017 Nov;16(6):1219-1242 [PMID: 33371588]
  32. Am J Trop Med Hyg. 2018 Jul;99(1):168-170 [PMID: 29785923]
  33. Environ Pollut. 2015 Nov;206:1-6 [PMID: 26141126]
  34. Chemosphere. 2019 Jul;226:636-644 [PMID: 30954898]
  35. Anal Bioanal Chem. 2010 Jul;397(6):2525-31 [PMID: 20473485]
  36. Int J Hyg Environ Health. 2012 Sep;215(5):487-95 [PMID: 22218106]
  37. Food Chem Toxicol. 2019 Jul;129:153-161 [PMID: 31042590]
  38. Ecotoxicol Environ Saf. 2021 Feb;209:111821 [PMID: 33360593]
  39. Food Chem. 2021 Apr 16;342:128311 [PMID: 33051103]

Word Cloud

Created with Highcharts 10.0.0DELoysterscanbioaccessibilityDeltamethrinPacificdifferentcookingsimulateddigestionBioaccessibilityroastingNCM460cellsintroducedfoodchainbioaccumulationpotentiallythreatenhumanhealthobjectivestudyinvestigatemethodscontenttissuesgoinghighlowgillsmantlevisceraadductormuscledecreasedsteaming65%51%treatmentscomparedraw82%indicatedusedrecommendedmethodprocessconcentrationdigestivejuiceaffectedpHgastricphasetransportefficiencymonolayermolecularmembraneranged3545%resultshelpassesspotentialharmconsumersshellfishFurthermoreprovidesreferenceimpactlipophilictoxinsseafoodIntestinalTransportOysterUsingSimulatedDigestion/NCM460CellModelsdeltamethrinmagallanagigasoyster

Similar Articles

Cited By