Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency.
Sara Fañanas-Baquero, Oscar Quintana-Bustamante, Daniel P Dever, Omaira Alberquilla, Rebeca Sanchez-Dominguez, Joab Camarena, Isabel Ojeda-Perez, Mercedes Dessy-Rodriguez, Rolf Turk, Mollie S Schubert, Annalisa Lattanzi, Liwen Xu, Jose L Lopez-Lorenzo, Paola Bianchi, Juan A Bueren, Mark A Behlke, Matthew Porteus, Jose-Carlos Segovia
Author Information
Sara Fañanas-Baquero: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Oscar Quintana-Bustamante: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Daniel P Dever: Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
Omaira Alberquilla: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Rebeca Sanchez-Dominguez: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Joab Camarena: Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
Isabel Ojeda-Perez: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Mercedes Dessy-Rodriguez: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Rolf Turk: Integrated DNA Technologies, Coralville, IA 52241, USA.
Mollie S Schubert: Integrated DNA Technologies, Coralville, IA 52241, USA.
Annalisa Lattanzi: Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
Liwen Xu: Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
Jose L Lopez-Lorenzo: Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid 28015, Spain.
Paola Bianchi: UOC Ematologia, Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan 20122, Italy.
Juan A Bueren: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Mark A Behlke: Integrated DNA Technologies, Coralville, IA 52241, USA.
Matthew Porteus: Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
Jose-Carlos Segovia: Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28040, Spain.
Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell ( ) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.