Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process.

Ke-Jia Shan, Changshuo Wei, Yu Wang, Qing Huan, Wenfeng Qian
Author Information
  1. Ke-Jia Shan: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  2. Changshuo Wei: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  3. Yu Wang: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  4. Qing Huan: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
  5. Wenfeng Qian: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

The capacity of RNA viruses to adapt to new hosts and rapidly escape the host immune system is largely attributable to genetic diversity that emerges through mutations in RNA. Although the molecular spectrum of mutations-the relative rates at which various base substitutions occur-are widely recognized as informative toward understanding the evolution of a viral genome, little attention has been paid to the possibility of using molecular spectra to infer the host origins of a virus. Here, we characterize the molecular spectrum of mutations for SARS-CoV-2 from transcriptomic data obtained from virus-infected cell lines, enabled by the use of sporadic junctions formed during discontinuous transcription as molecular barcodes. We find that mutations are generated in a replication-independent manner, typically on the genomic strand, and highly dependent on mutagenic mechanisms specific to the host cellular environment. mutations will then strongly influence the types of base substitutions accumulated during SARS-CoV-2 evolution, in an asymmetric manner favoring specific mutation types. Consequently, similarities between the mutation spectra of SARS-CoV-2 and the bat coronavirus RaTG13, which have accumulated since their divergence strongly suggest that SARS-CoV-2 evolved in a host cellular environment highly similar to that of bats before its zoonotic transfer into humans. Collectively, our findings provide data-driven support for the natural origin of SARS-CoV-2.

Keywords

References

  1. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  2. Nat Med. 2020 Apr;26(4):450-452 [PMID: 32284615]
  3. Wiley Interdiscip Rev Syst Biol Med. 2010 Sep-Oct;2(5):594-602 [PMID: 20836050]
  4. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  5. J Biol Chem. 2019 Oct 11;294(41):15158-15171 [PMID: 31439666]
  6. PeerJ. 2020 Jul 28;8:e9648 [PMID: 33194341]
  7. Innovation (Camb). 2020 Aug 28;1(2):100021 [PMID: 33521758]
  8. Annu Rev Virol. 2015 Nov;2(1):265-88 [PMID: 26958916]
  9. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  10. Genome Biol. 2018 Sep 14;19(1):132 [PMID: 30217230]
  11. Nature. 2020 Jul;583(7815):286-289 [PMID: 32380510]
  12. Sci Adv. 2017 Oct 20;3(10):e1701484 [PMID: 29062891]
  13. Science. 2021 May 14;372(6543):694 [PMID: 33986172]
  14. Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947 [PMID: 30371878]
  15. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18584-9 [PMID: 24167253]
  16. Lancet. 2020 Feb 15;395(10223):470-473 [PMID: 31986257]
  17. Cell Rep. 2020 Aug 18;32(7):108028 [PMID: 32814037]
  18. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):648-663 [PMID: 33581339]
  19. Science. 2003 Oct 10;302(5643):276-8 [PMID: 12958366]
  20. Nat Rev Microbiol. 2021 Mar;19(3):155-170 [PMID: 33116300]
  21. Arch Med Res. 2020 Jul;51(5):384-387 [PMID: 32402576]
  22. Emerg Microbes Infect. 2018 Sep 12;7(1):154 [PMID: 30209269]
  23. Genome Biol Evol. 2022 Feb 4;14(2): [PMID: 35137080]
  24. Sci Rep. 2014 Apr 15;4:4689 [PMID: 24732879]
  25. Genome Biol Evol. 2021 May 7;13(5): [PMID: 33895815]
  26. Clin Infect Dis. 2020 Jul 28;71(15):713-720 [PMID: 32129843]
  27. Biol Chem. 2005 Apr;386(4):333-7 [PMID: 15899695]
  28. Carcinogenesis. 2001 Mar;22(3):367-74 [PMID: 11238174]
  29. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9415-9420 [PMID: 28798064]
  30. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):961-8 [PMID: 20080596]
  31. Nature. 2017 Oct 11;550(7675):204-213 [PMID: 29022597]
  32. Mol Biol Evol. 2004 Mar;21(3):468-88 [PMID: 14660683]
  33. Biol Chem. 2006 Jan;387(1):103-11 [PMID: 16497170]
  34. Nature. 2020 Jul;583(7815):282-285 [PMID: 32218527]
  35. Infect Dis Immun. 2021 Apr 20;1(1):3-4 [PMID: 38630114]
  36. Emerg Microbes Infect. 2020 Dec;9(1):313-319 [PMID: 32020836]
  37. Nature. 2014 Jan 30;505(7485):686-90 [PMID: 24284629]
  38. Euro Surveill. 2017 Mar 30;22(13): [PMID: 28382917]
  39. Nature. 2020 Feb;578(7793):94-101 [PMID: 32025018]
  40. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3062-3071 [PMID: 30718408]
  41. J Mol Evol. 1994 Jul;39(1):105-11 [PMID: 8064867]
  42. iScience. 2021 Aug 20;24(8):102857 [PMID: 34278249]
  43. mBio. 2014 Feb 25;5(2):e00884-14 [PMID: 24570370]
  44. Nat Rev Microbiol. 2021 Mar;19(3):141-154 [PMID: 33024307]
  45. Nat Med. 2021 Jan;27(1):9 [PMID: 33442004]
  46. Nat Microbiol. 2020 Nov;5(11):1408-1417 [PMID: 32724171]
  47. Cell. 2019 May 2;177(4):821-836.e16 [PMID: 30982602]
  48. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  49. IUBMB Life. 2006 Oct;58(10):581-8 [PMID: 17050375]
  50. Genome Biol Evol. 2021 Apr 5;13(4): [PMID: 33713114]
  51. Virology. 2015 May;479-480:131-45 [PMID: 25818029]
  52. Adv Virus Res. 2013;86:1-36 [PMID: 23498901]
  53. Cell. 2016 Jan 28;164(3):538-49 [PMID: 26806129]
  54. Lancet. 2021 Jul 17;398(10296):209-211 [PMID: 34237296]
  55. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2310-8 [PMID: 24847077]
  56. Emerg Infect Dis. 2020 Dec;26(12):3025-3029 [PMID: 33219796]
  57. Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4218-4222 [PMID: 29610342]
  58. Nature. 2013 Aug 22;500(7463):415-21 [PMID: 23945592]
  59. Genome Biol. 2019 Dec 24;20(1):298 [PMID: 31874648]
  60. Elife. 2015 Dec 10;4: [PMID: 26652005]
  61. Emerg Microbes Infect. 2020 Dec;9(1):505-507 [PMID: 32102621]
  62. J Virol. 2010 Oct;84(19):9733-48 [PMID: 20660197]
  63. Nat Commun. 2021 Nov 9;12(1):6563 [PMID: 34753934]
  64. Cell Mol Life Sci. 2010 Jun;67(11):1817-29 [PMID: 20148281]
  65. Sci China Life Sci. 2021 Sep;64(9):1560-1563 [PMID: 34269976]
  66. Sci Adv. 2020 Jun 17;6(25):eabb5813 [PMID: 32596474]
  67. Cell Mol Life Sci. 2016 Dec;73(23):4433-4448 [PMID: 27392606]
  68. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  69. Curr Opin Microbiol. 2015 Apr;24:80-7 [PMID: 25637723]

Word Cloud

Similar Articles

Cited By