Comparative Study of Government Response Measures and Epidemic Trends for COVID-19 Global Pandemic.

Chenyang Wang, Hui Zhang, Yang Gao, Qing Deng
Author Information
  1. Chenyang Wang: Department of Engineering Physics, Tsinghua University, Beijing, China.
  2. Hui Zhang: Department of Engineering Physics, Tsinghua University, Beijing, China.
  3. Yang Gao: Department of Engineering Physics, Tsinghua University, Beijing, China.
  4. Qing Deng: Department of Engineering Physics, Tsinghua University, Beijing, China.

Abstract

The ongoing novel coronavirus (COVID-19) epidemic has evolved into a full range of challenges that the world is facing. Health and economic threats caused governments to take preventive measures against the spread of the disease. This study aims to provide a correlation analysis of the response measures adopted by countries and epidemic trends since the COVID-19 outbreak. This analysis picks 13 countries for quantitative assessment. We select a trusted model to fit the epidemic trend curves in segments and catch the characteristics based on which we explore the key factors of COVID-19 spread. This review generates a score table of government response measures according to the Likert scale. We use the Delphi method to obtain expert judgments about the government response in the Likert scale. Furthermore, we find a significant negative correlation between the epidemic trend characteristics and the government response measure scores given by experts through correlation analysis. More stringent government response measures correlate with fewer infections and fewer waves in the infection curves. Stringent government response measures curb the spread of COVID-19, limit the number of total infectious cases, and reduce the time to peak of total cases. The clusters of the results categorize the countries into two specific groups. This study will improve our understanding of the prevention of COVID-19 spread and government response.

Keywords

References

  1. Sci Total Environ. 2020 Aug 10;729:138995 [PMID: 32353723]
  2. Infect Dis Model. 2020 Feb 11;5:248-255 [PMID: 32099934]
  3. Chaos Solitons Fractals. 2020 Jun;135:109842 [PMID: 32341627]
  4. Lancet. 2020 Mar 21;395(10228):931-934 [PMID: 32164834]
  5. Risk Anal. 2009 Jul;29(7):949-62 [PMID: 19392673]
  6. Risk Anal. 2012 Apr;32(4):729-43 [PMID: 22332702]
  7. Nat Med. 2020 May;26(5):676-680 [PMID: 32371934]
  8. Science. 2020 Jul 17;369(6501):315-319 [PMID: 32423996]
  9. Risk Anal. 2016 Jul;36(7):1487-509 [PMID: 25109229]
  10. Infect Dis Model. 2019 Dec 11;5:12-22 [PMID: 31891014]
  11. Risk Anal. 2019 Jan;39(1):225-243 [PMID: 30144107]
  12. J Theor Biol. 2019 Feb 7;462:122-133 [PMID: 30423306]
  13. Bull Math Biol. 2020 Apr 8;82(4):52 [PMID: 32270376]
  14. Infect Dis Model. 2020;5:316-322 [PMID: 32518882]
  15. J Med Virol. 2020 Jun;92(6):568-576 [PMID: 32134116]
  16. Infect Dis Model. 2020 Jan 08;5:129-141 [PMID: 31956741]
  17. Epidemics. 2016 Dec;17:50-55 [PMID: 27846442]
  18. Science. 2020 May 29;368(6494):951-954 [PMID: 32393527]
  19. JAMA. 2020 May 19;323(19):1912-1914 [PMID: 32221579]
  20. JAMA. 2020 Apr 14;323(14):1343-1344 [PMID: 32125355]
  21. J Med Virol. 2020 Jun;92(6):645-659 [PMID: 32141624]
  22. Adv Health Sci Educ Theory Pract. 2010 Dec;15(5):625-32 [PMID: 20146096]
  23. Ann Surg. 2020 Jul;272(1):e1-e2 [PMID: 32209891]
  24. J Infect Public Health. 2020 May;13(5):667-673 [PMID: 32340833]
  25. N Engl J Med. 2020 Apr 30;382(18):e41 [PMID: 32212516]
  26. Philos Trans R Soc Lond B Biol Sci. 2017 May 26;372(1721): [PMID: 28396469]
  27. Lancet Infect Dis. 2020 May;20(5):529-530 [PMID: 32240632]
  28. Lancet Glob Health. 2020 May;8(5):e633-e634 [PMID: 32353305]
  29. Risk Anal. 2020 May;40(5):902-907 [PMID: 32356927]
  30. Science. 2020 May 1;368(6490):489-493 [PMID: 32179701]
  31. Infect Dis Model. 2020 Jan 08;5:189-196 [PMID: 31993546]
  32. Science. 2020 Jul 10;369(6500):208-211 [PMID: 32404476]
  33. PLoS Negl Trop Dis. 2020 Dec 21;14(12):e0008939 [PMID: 33347438]
  34. Int J Infect Dis. 2020 May;94:116-118 [PMID: 32320809]
  35. Science. 2020 May 29;368(6494):948-950 [PMID: 32393526]
  36. Lancet Respir Med. 2020 May;8(5):440-442 [PMID: 32247325]
  37. Transp Res E Logist Transp Rev. 2020 Jun;138:101967 [PMID: 32382249]
  38. Int J Surg. 2020 May;77:206-216 [PMID: 32289472]
  39. Lancet. 2020 Jun 27;395(10242):1973-1987 [PMID: 32497510]
  40. Infect Dis Model. 2020 May 30;5:346-356 [PMID: 32537527]
  41. Risk Anal. 2015 Jan;35(1):5-11 [PMID: 25156754]
  42. Science. 2020 Aug 14;369(6505):812-817 [PMID: 32434946]
  43. Int J Infect Dis. 2020 Jun;95:316-318 [PMID: 32360941]
  44. Lancet Infect Dis. 2020 Jun;20(6):631-633 [PMID: 32213329]
  45. Medicine (Baltimore). 2016 Mar;95(12):e3072 [PMID: 27015177]
  46. Anesth Analg. 2018 May;126(5):1763-1768 [PMID: 29481436]
  47. Lancet Glob Health. 2020 May;8(5):e631-e632 [PMID: 32246918]
  48. Risk Anal. 2016 May;36(5):939-53 [PMID: 26477887]
  49. Infect Dis Model. 2020;5:271-281 [PMID: 32289100]
  50. Sustain Cities Soc. 2021 Apr;67:102714 [PMID: 36569573]
  51. Risk Anal. 2019 Aug;39(8):1825-1842 [PMID: 30925211]
  52. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  53. One Health. 2020 May 05;10:100137 [PMID: 32373705]
  54. Transp Res E Logist Transp Rev. 2020 Apr;136:101922 [PMID: 32288597]

MeSH Term

COVID-19
China
Government
Humans
Pandemics
Quarantine
SARS-CoV-2