Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior.

Kent D Dunlap, Haley M Koukos, Boris P Chagnaud, Harold H Zakon, Andrew H Bass
Author Information
  1. Kent D Dunlap: Department of Biology, Trinity College, Hartford, CT, United States.
  2. Haley M Koukos: Department of Biology, Trinity College, Hartford, CT, United States.
  3. Boris P Chagnaud: Institute of Biology, Karl-Franzens-University Graz, Graz, Austria.
  4. Harold H Zakon: Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.
  5. Andrew H Bass: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States.

Abstract

The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis ( aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.

Keywords

References

  1. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8095-100 [PMID: 8755609]
  2. Horm Behav. 2017 Jun;92:182-189 [PMID: 27914879]
  3. J Comp Neurol. 1996 Oct 28;374(4):493-505 [PMID: 8910731]
  4. J Neurosci. 2013 Nov 27;33(48):18775-80 [PMID: 24285884]
  5. J Comp Neurol. 2000 Jul 3;422(3):363-79 [PMID: 10861513]
  6. J Exp Biol. 2019 Aug 16;222(Pt 16): [PMID: 31420449]
  7. Horm Behav. 2002 Sep;42(2):97-108 [PMID: 12367563]
  8. J Chem Neuroanat. 2018 Jul;90:70-79 [PMID: 29288708]
  9. Horm Behav. 2011 Aug;60(3):275-83 [PMID: 21683080]
  10. Ann N Y Acad Sci. 1966 Jul 14;137(2):495-508 [PMID: 5229811]
  11. Neuroscience. 2014 Jun 20;271:108-18 [PMID: 24780766]
  12. Neuroendocrinology. 2012;96(2):131-40 [PMID: 22414851]
  13. J Neurosci. 2011 Sep 28;31(39):13808-15 [PMID: 21957243]
  14. Dev Neurobiol. 2020 Jan;80(1-2):70-80 [PMID: 31955508]
  15. BMC Evol Biol. 2020 Jan 9;20(1):6 [PMID: 31918666]
  16. J Neurobiol. 2005 Oct;65(1):50-8 [PMID: 16010669]
  17. J Neurosci. 2018 Jun 13;38(24):5456-5465 [PMID: 29735558]
  18. J Chem Neuroanat. 2011 Jul;41(4):294-308 [PMID: 21635948]
  19. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3675-80 [PMID: 16505358]
  20. Horm Behav. 2006 Sep;50(3):432-41 [PMID: 16870192]
  21. J Comp Neurol. 2020 Oct 15;528(15):2602-2619 [PMID: 32266714]
  22. J Neurosci. 2004 Jun 30;24(26):5892-900 [PMID: 15229236]
  23. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Mar;203(3):183-195 [PMID: 28233058]
  24. Brain Behav Evol. 2016;87(4):232-41 [PMID: 27215902]
  25. PLoS One. 2016 Dec 1;11(12):e0167509 [PMID: 27907106]
  26. J Comp Neurol. 2019 Jun 1;527(8):1362-1377 [PMID: 30620047]
  27. Horm Behav. 2008 Jun;54(1):69-82 [PMID: 18336816]
  28. Front Neuroendocrinol. 2015 Apr;37:129-45 [PMID: 25168757]
  29. J Neurobiol. 2005 Oct;65(1):37-49 [PMID: 16003720]
  30. Nat Commun. 2011 Jun 14;2:346 [PMID: 21673667]
  31. Brain Behav Evol. 1986;28(1-3):32-42 [PMID: 3567539]
  32. J Neurosci. 2007 Feb 7;27(6):1485-97 [PMID: 17287524]
  33. Horm Behav. 2015 Jun;72:60-7 [PMID: 25989595]
  34. Front Neuroendocrinol. 2006 Sep;27(3):247-74 [PMID: 16828853]
  35. PLoS Biol. 2009 Sep;7(9):e1000203 [PMID: 19787026]
  36. J Neurosci. 2020 Feb 12;40(7):1549-1559 [PMID: 31911461]
  37. J Exp Biol. 2014 Apr 1;217(Pt 7):1046-57 [PMID: 24265429]
  38. J Exp Biol. 2013 Jul 1;216(Pt 13):2365-79 [PMID: 23761462]
  39. Physiol Behav. 2007 Feb 28;90(2-3):525-36 [PMID: 17178133]
  40. Brain Behav Evol. 1990;35(5):268-77 [PMID: 2207614]
  41. J Physiol Paris. 2016 Oct;110(3 Pt B):259-272 [PMID: 27769923]
  42. Front Integr Neurosci. 2020 Jul 29;14:42 [PMID: 32848649]
  43. Horm Behav. 2005 Mar;47(3):297-305 [PMID: 15708758]
  44. Physiol Behav. 1996 Jun;59(6):1147-54 [PMID: 8737905]
  45. J Comp Neurol. 2021 Jun;529(8):1787-1809 [PMID: 33070328]
  46. J Neurosci. 2005 Sep 21;25(38):8746-54 [PMID: 16177044]
  47. J Comp Neurol. 1992 Mar 22;317(4):421-37 [PMID: 1578005]
  48. PLoS One. 2013 Aug 06;8(8):e70474 [PMID: 23936438]
  49. J Exp Biol. 2013 Jul 1;216(Pt 13):2442-50 [PMID: 23761469]
  50. Physiol Behav. 2020 Jun 1;220:112883 [PMID: 32199998]
  51. J Comp Neurol. 2020 Dec 15;528(18):3451-3478 [PMID: 32361985]
  52. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19609-14 [PMID: 24218585]
  53. Proc Biol Sci. 2019 Jul 24;286(1907):20191084 [PMID: 31311480]
  54. J Comp Neurol. 2020 Feb 15;528(3):433-452 [PMID: 31469908]
  55. J Exp Biol. 2001 Jun;204(Pt 11):1909-23 [PMID: 11441033]
  56. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22172-7 [PMID: 21127261]
  57. J Neurophysiol. 2012 Jun;107(12):3528-42 [PMID: 22423004]
  58. J Chem Neuroanat. 1990 Nov-Dec;3(6):429-65 [PMID: 2291814]
  59. Tissue Cell. 2017 Apr;49(2 Pt B):257-269 [PMID: 28242105]
  60. Proc Biol Sci. 2018 Jan 31;285(1871): [PMID: 29343607]
  61. Elife. 2021 Mar 15;10: [PMID: 33721553]
  62. J Neurophysiol. 2009 Aug;102(2):1121-31 [PMID: 19553489]
  63. J Exp Biol. 2008 Sep;211(Pt 18):3041-56 [PMID: 18775941]
  64. Curr Biol. 2018 Jul 9;28(13):2094-2102.e5 [PMID: 29937349]
  65. J Physiol Paris. 2014 Apr-Jun;108(2-3):203-12 [PMID: 25125289]
  66. Brain Behav Evol. 1989;33(4):237-47 [PMID: 2667693]
  67. Genome Biol Evol. 2017 Dec 1;9(12):3525-3530 [PMID: 29240929]
  68. J Exp Biol. 2013 Jul 1;216(Pt 13):2434-41 [PMID: 23761468]
  69. Nature. 2000 Feb 17;403(6771):769-72 [PMID: 10693805]
  70. PLoS Biol. 2018 Mar 27;16(3):e2004892 [PMID: 29584718]
  71. J Physiol Paris. 2016 Oct;110(3 Pt B):224-232 [PMID: 27915075]
  72. Science. 2018 Nov 16;362(6416): [PMID: 30385464]
  73. Horm Behav. 2005 Nov;48(4):360-72 [PMID: 16005002]
  74. J Neurophysiol. 1967 Mar;30(2):180-208 [PMID: 4167209]
  75. Curr Biol. 2016 Oct 10;26(19):2681-2689 [PMID: 27666972]
  76. Proc Biol Sci. 2014 Sep 22;281(1791):20141197 [PMID: 25080341]
  77. Prog Brain Res. 2008;170:3-15 [PMID: 18655867]
  78. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):613-24 [PMID: 16437223]
  79. Horm Behav. 2006 Jun;50(1):10-7 [PMID: 16584732]
  80. J Comp Neurol. 2018 Jun 1;526(8):1368-1388 [PMID: 29424431]
  81. Horm Behav. 2009 Feb;55(2):306-13 [PMID: 19063894]
  82. J Comp Neurol. 2002 Dec 23;454(4):440-55 [PMID: 12455008]
  83. J Neurosci. 1994 Jul;14(7):4025-39 [PMID: 8027760]
  84. J Neurosci. 2017 Feb 22;37(8):2045-2060 [PMID: 28115483]
  85. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Jan;204(1):93-112 [PMID: 29058069]
  86. J Comp Neurol. 2005 Feb 28;483(1):91-113 [PMID: 15672394]
  87. Behav Brain Res. 1987 Jul;25(1):75-81 [PMID: 3620087]
  88. J Comp Neurol. 1986 Mar 22;245(4):514-30 [PMID: 3700711]
  89. Dev Neurobiol. 2007 Feb 15;67(3):339-54 [PMID: 17443792]
  90. J Neurophysiol. 1967 Mar;30(2):209-35 [PMID: 6045195]
  91. J Vis Exp. 2019 Oct 27;(152): [PMID: 31710047]
  92. J Physiol. 2020 Apr;598(8):1573-1589 [PMID: 32011728]
  93. J Chem Neuroanat. 2018 Dec;94:139-153 [PMID: 30336206]
  94. Sci Rep. 2020 Jun 11;10(1):9496 [PMID: 32528029]
  95. J Neurobiol. 1990 Dec;21(8):1155-68 [PMID: 2273398]
  96. Science. 2014 Jun 27;344(6191):1522-5 [PMID: 24970089]
  97. Psychoneuroendocrinology. 2013 Apr;38(4):465-78 [PMID: 23290368]
  98. Horm Behav. 2008 Mar;53(3):481-8 [PMID: 18206154]
  99. J Neurosci. 2005 Jun 22;25(25):5967-74 [PMID: 15976085]
  100. J Physiol Paris. 2016 Oct;110(3 Pt A):119-126 [PMID: 27940222]
  101. J Exp Biol. 2003 Apr;206(Pt 8):1353-62 [PMID: 12624170]
  102. Behav Neurosci. 1999 Apr;113(2):391-400 [PMID: 10357463]
  103. Brain Behav Evol. 1989;34(1):43-7 [PMID: 2819409]
  104. J Neurosci. 2020 Jan 2;40(1):22-36 [PMID: 31896561]
  105. Science. 2004 Jul 16;305(5682):404-7 [PMID: 15256672]
  106. J Exp Biol. 1999 May;202(Pt 10):1417-26 [PMID: 10210682]
  107. J Comp Neurol. 2014 Sep 1;522(13):2887-927 [PMID: 24715479]
  108. J Exp Biol. 2013 Jul 1;216(Pt 13):2459-68 [PMID: 23761471]
  109. Dev Dyn. 2007 Apr;236(4):1072-84 [PMID: 17304529]
  110. Front Behav Neurosci. 2010 Aug 13;4: [PMID: 20802858]
  111. J Neurosci. 2007 Jan 31;27(5):1114-22 [PMID: 17267566]
  112. Front Endocrinol (Lausanne). 2020 Jul 23;11:468 [PMID: 32793118]
  113. Front Integr Neurosci. 2019 Aug 13;13:37 [PMID: 31456670]
  114. J Comp Neurol. 2013 Aug 15;521(12):2850-69 [PMID: 23460422]
  115. Biol Open. 2018 Nov 29;7(12): [PMID: 30341102]
  116. J Comp Physiol A. 1987 Aug;161(2):187-200 [PMID: 3625572]
  117. Front Behav Neurosci. 2018 Jan 18;12:1 [PMID: 29403366]
  118. Brain Behav Evol. 2014;84(1):51-65 [PMID: 25115796]
  119. Brain Behav Evol. 2012;79(4):215-7 [PMID: 22722084]
  120. Nature. 2016 Jan 21;529(7586):399-402 [PMID: 26760208]
  121. Brain Behav Evol. 1985;27(2-4):115-31 [PMID: 3843068]
  122. Brain Behav Evol. 1997;50 Suppl 1:3-16 [PMID: 9217990]
  123. Dev Neurobiol. 2008 Oct;68(12):1420-8 [PMID: 18726915]
  124. Front Integr Neurosci. 2019 Aug 20;13:39 [PMID: 31481882]
  125. J Mol Evol. 2016 Aug;83(1-2):61-77 [PMID: 27481396]
  126. J Chem Neuroanat. 2019 Nov 6;104:101708 [PMID: 31705955]
  127. J Exp Biol. 2008 Mar;211(Pt 6):1012-20 [PMID: 18310126]
  128. J Neurosci. 2017 Mar 22;37(12):3264-3275 [PMID: 28219984]
  129. Cell. 2012 Nov 21;151(5):1126-37 [PMID: 23178128]
  130. Annu Rev Physiol. 2006;68:193-221 [PMID: 16460271]
  131. Commun Biol. 2020 Oct 23;3(1):602 [PMID: 33097816]
  132. eNeuro. 2016 Nov 2;3(5): [PMID: 27844054]
  133. Naturwissenschaften. 2004 Jul;91(7):338-41 [PMID: 15257389]
  134. Physiol Behav. 2007 Jan 30;90(1):11-20 [PMID: 16996093]
  135. Front Behav Neurosci. 2012 Nov 19;6:77 [PMID: 23181014]
  136. J Neurophysiol. 2010 Feb;103(2):648-58 [PMID: 19955293]
  137. J Comp Neurol. 2003 Jul 14;462(1):1-14 [PMID: 12761820]
  138. J Neurophysiol. 2006 Jul;96(1):71-85 [PMID: 16598068]
  139. Curr Biol. 2013 Apr 22;23(8):678-83 [PMID: 23562266]
  140. Sci Rep. 2020 Oct 7;10(1):16707 [PMID: 33028878]
  141. J Exp Biol. 2013 Jul 1;216(Pt 13):2412-20 [PMID: 23761466]
  142. Curr Opin Neurobiol. 2014 Oct;28:94-100 [PMID: 25050813]

MeSH Term

Animals
Brain
Electric Fish
Male
Rhombencephalon
Social Behavior
Vocalization, Animal

Word Cloud

Created with Highcharts 10.0.0communicationfishsocialvocalelectriccircuitstwosystemsneuralneuromodulatorsrecentstudiesbehaviorssignalshormonesregulationparallelevolutionreviewbehaviormochokidcatfishuseamongvertebratebestunderstoodlevelformssignalingrelymidbraininputshindbrainpatterngeneratorsactivateperipheraleffectorssonicmuscleselectrocytesproducepulsatilemodulatedfrequency/repetitionrateamplitudecalldurationgeneratevarysexmalephenotypecontextresponsivewiderangeactingdifferenttimescalesmultiplelociBassZakon2005reviewedbehavioralneuroendocrinologyteleostgroupscomparingconvergeddivergedrevisitcomparisoncomplementarydevelopmentspast16yearssummarizeworkexpandsknowledgeunderlyingbactionegserotoninAVTmelatoninbrainsteroidogenesisaromatasestimulioutputchighlighttranscriptomicillustratecontemporarymolecularmethodselucidatedgeneticddescribeconsidersplicedtogetherspeciesFinallyofferavenuesfutureresearchprobesimilaritiesdifferencesemergeontogenyVocalElectricFish:RevisitingComparisonTwoTeleostModelsNeuroethologySocialBehaviorcircuit

Similar Articles

Cited By